M.C.A.

# 10P/203/21

| Set 140 II                   | Question Booklet No                                             |
|------------------------------|-----------------------------------------------------------------|
|                              | (To be filled up by the candidate by blue/black ball-point pen) |
| Roll No.                     |                                                                 |
| Roll No.<br>(Write the digit | s in words)                                                     |
| Serial No. of A              | nswer Sheet                                                     |
| Day and Date                 | (Signature of Invigilator)                                      |

#### INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- **3.** A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- **4.** Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- **6.** No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- **7.** Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- **9.** For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- **10.** Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- **12.** Deposit both the Question Booklet and the Answer Sheet at the end of the Test.
- **13.** You are not permitted to leave the Examination Hall until the end of the Test.
- **14.** If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[ उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं। ]

No. of Questions: 150

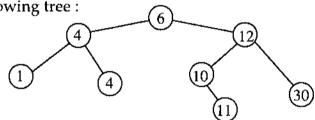
| Time   | : 2½ Hours ]     |                                                    |                       | [ Full Marks : 450                                   |
|--------|------------------|----------------------------------------------------|-----------------------|------------------------------------------------------|
| Note : | marks. (         |                                                    | ucted for each inco   | estion carries 3 (Three) rrect answer. Zero mark     |
|        |                  | than one alternative ar<br>choose the closest one. | •                     | oproximate to the correct                            |
| which  | *                |                                                    | ~ -                   | tions, choose the word,<br>word and mark it in the   |
| 1.     | •                | people find it prucent behaviour patterns.         | -                     | orally <b>flexible</b> attitude                      |
|        | (1) weak         |                                                    | (2) uncompron         | nising                                               |
|        | (3) hostile      |                                                    | (4) neutral           |                                                      |
| 2.     | His bearing a    | t his father's funeral la                          | cked gravity.         |                                                      |
|        | (1) humility     | (2) levity                                         | (3) joy               | (4) seriousness                                      |
|        | h is most nearly |                                                    |                       | itions, choose the word,<br>ad mark it in the Answer |
| 3.     | The group is     | quite <b>heterogeneous</b> so                      | ome are very rich wl  | hile some are very poor.                             |
| •      | (1) uniform      | (2) confusing                                      | (3) varied            | (4) contradictory                                    |
| 4.     | The device w     | hich <b>measures</b> earth-qi                      | uakes is called the R | ichter Scale ?                                       |
|        |                  | (2) gauges                                         |                       |                                                      |
| 5.     | Write down t     | he correct answer in th                            | e given questions ?   |                                                      |
|        | (1) Dog is a f   | aithful animal                                     | (2) The dog is:       | a faithful animal                                    |
|        | (3) The dog a    | are a faithful animal                              | (4) The dogs a        | re a faithful animal                                 |
|        |                  | (                                                  | 1)                    | P.T.O.                                               |

| 6.  | The Arjuna Award (1) Warfare (3) Journalism   | s are given for profic | (2)   | Mountaineerir    |        | lowing ?         |
|-----|-----------------------------------------------|------------------------|-------|------------------|--------|------------------|
|     | (5) Journalism                                |                        | (4)   | Sports           |        |                  |
| 7.  | Which of the follow                           | ving industries make   | s us  | e of animal prod | duce   | d raw material?  |
|     | (1) Cotton textile r                          | nills                  | (2)   | Jute mills       |        |                  |
|     | (3) Silk mills                                |                        | (4)   | Rayon mills      |        |                  |
| 8.  | In which of the originate?                    | following countries    | dio   | the decimal      | syste  | em of numbers    |
|     | (1) India                                     | (2) England            | (3)   | France           | (4)    | Germany          |
| 9.  | The New Year Day dates ?                      | of the Indian Solar    | Cale  | endar falls on w | hich   | of the following |
|     | (1) January 1                                 | (2) January 14         | (3)   | March 21/22      | (4)    | April 13/14      |
| 10. | Deficiency of which                           | n of the following vit | ami   | ns causes 'Ricke | t' ?   |                  |
|     | (1) A                                         | (2) B                  | (3)   |                  | (4)    | D                |
| 11. | Consider the follow char $c = 'a'$ ;          | ving program fragme    | ent   |                  |        |                  |
|     | while $(c^{++} < = 'z')$<br>putchar $(xxx)$ ; |                        |       |                  |        |                  |
|     | If the required outp                          | out is abcd            | xyz,  | then xxx shoul   | d be   | •                |
|     | (1) c                                         | (2) c                  | (3)   | c-1              | (4)    | c                |
| 12. | If integer needs tw is:                       | o bytes of storage, tl | hen   | maximum valu     | e of a | a signed integer |
|     | (1) $2^{16}-1$                                | (2) $2^{15}-1$         | (3)   | 216              | (4)    | 215              |
| 13. | Length of the string (1) 7                    | ; "Correct" is :       | (2)   |                  |        |                  |
|     | (3) 6                                         |                        | (4)   | implementation   | n dep  | pendent          |
| 14. | The minimum num two variables is:             | nber of temporary va   | arial | oles needed to s | swap   | the contents of  |
|     | (1) 1                                         | (2) 2                  | (3)   | 3                | (4)    | 0                |
|     |                                               |                        |       |                  |        |                  |

**15.** C is a:

- (1) high level language
- (2) low level language
- (3) high level language with some low level features
- (4) machine language

**16.** C was primarily developed as a :


- (1) systems programming language
- (2) general purpose language
- (3) data processing language
- (4) machine language

**17.** In the Boolean Algebra the value of x + x. (y + 1) is equal to :

- (1) x
- (2) y

- (3) 1
- (4) 0

**18.** Consider the following tree:



If this tree is used for sorting, then a new number 8 should be placed at the :

- (1) left child of node labelled 30
- (2) right child of node labelled 5
- (3) right child of node labelled 30
- (4) left child of node labelled 10

**19.** The heart and the nerve centre of a computer is its:

- (1) output unit
- (2) input unit
- (3) C. P. U.
- (4) memory

**20.** A C. P. U. consist of :

- (1) input unit
- (2) output unit
- (3) memory unit
- (4) arithmetic and logical unit, control unit

(3)

Less than

### Directions: (Question Nos. 21-25):

In these questions different alphabets stand for various symbols as indicated below:

Addition : O
Subtraction : M
Multiplication : A
Division : Q
Equal to : X
Greater than : Y

Out of the four alternatives given in these questions, only one is correct according to the above letter symbols identify the correct answer.

21. (1) 2Y1A1Q1O1A1

(2) 16 Z 8 A 3 O 1 A 2 M 2

(3) 32 X 8 Q 2 A 3 Q 1 A 2

 $\mathbf{Z}$ 

(4) 14 X 2 A 4 A 2 M 2 Q 1

**22.** (1) 5 Q 5 A 5 O 5 Y 5 A 2

(2) 2Q1O10A1Z6A4

(3) 101Q1M1Y3Q1

 $(4) \ \ 3 \ O \ 2 \ O \ 10 \ Q \ 2 \ X \ 10 \ Y \ 2$ 

**23**. (1) 8 O 2 A 12 Q 10 X 18 Q 9

(2) 2 O 3 M 4 Q 2 Z 1 A 2

(3) 8 Q 4 A 1 M 2 X 16 M 16

(4) 6 Q 2 O 1 O 1 X 16 A 1

**24.** (1) 8 Y 2 A 3 A 4 Q 2 A 4

(2) 10 X 2 O 2 A 4 O 1 M 2

(3) 12 X 4 O 2 Q 1 A 4 A 2

(4) 2 Z 2 A 4 O 1 A 4 M 8

25. (1) 3O2X2Q1A3O1

(2) 10 A 2 Y 2 Q 1 A 10 Q 2

(3) 10 A 2 Z 2 Q 2 A 10 Q 2

(4) 6 M 2 Y 10 Q 2 A 3 O 1

## Directions : (Question Nos. 26-30) :

The following five questions are based on statements. Read them carefully and find the correct answer out of the alternatives given under each.

Madhu and Shivani are good in Dramatics and Computer Science.

Asha and Madhu are good in Computer Science and Physics.

Asha, Pratibha and Namita are good in Physics and History.

Namita and Asha are good in Physics and Mathematics.

Pratibha and Shivani are good in History and Dramatics

26. Who is good in Computer Science, History and Dramatics?

(1) Asha

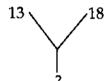
(2) Madhu

(3) Namita

(4) Shivani

- 27. Who is good in Physics, Dramatics and Computer Science?
  - (1) Pratibha
- (2) Shivani
- (3) Madhu
- (4) Asha
- 28. Who is good in Physics, History and Dramatics?
  - (1) Madhu
- (2) Pratibha
- (3) Shivani
- (4) Asha
- 29. Who is good in History, Physics, Computer Science and Mathematics?
  - (1) Asha
- (2) Namita
- (3) Madhu
- (4) Pratibha
- **30.** Who is good in Physics, History and Mathematics, but not in Computer Science?
  - (1) Asha
- (2) Pratibha
- (3) Madhu
- (4) Namita

## Directions: (Question Nos. 31-35):


Which number should come in place of question mark (?) in the following questions :

31.



12

228



- (1) 31
- (2) 229
- (3) 234
- (4) 312

32.



7/?5



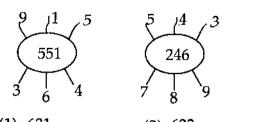
- (1) 25
- (2) 47
- (3) 37
- (4) 41

33.



18 2




- (1) 18
- (2) 13
- (3) 30
- (4) -30

34.

| 9   | 5   | 6   |
|-----|-----|-----|
| 5   | 7   | ?   |
| 3   | 4   | 5   |
| 135 | 140 | 150 |

- (1) 8
- (2) 10
- (3) 5
- (4) 4

35.



(1) 631

(2) 622

(3) 624

(4) 262

## Directions: (Question Nos. 36-41):

Which number is wrong in the given series?

**36.** 1, 2, 9, 37, 65, 126, 217:

(1) 2

(2) 9

(3) 37

(4) 65

**37.** 4, 10, 6, 11, 17, 12, 20, 24, 20, 31, 37:

(1) 20

(2) 24

(3) 31

(4) 37

**38.** 1, 4, 8, 6, 9, 12, 16, 14, 17, 23, 24, 22:

(1) 24

(2) 23

(3) 17

(4) 22

**39.** 2, 3, 6, 15, 52.5, 157.5, 630:

(1) 15

(2) 52.5

(3) 157.5

(4) 3

**40.** 5, 7, 13, 25, 44, 75, 117:

(1) 7

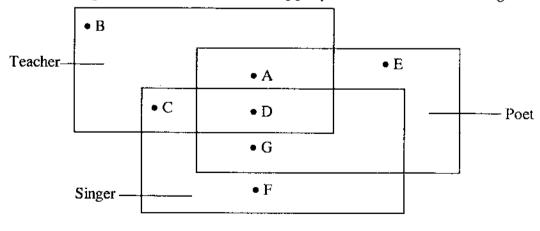
(2) 13

(3) 25

(4) 44

**41.** 6, 18, 36, 108, 216, 648, 1290, 3888 :

(1) 36


(2) 108

(3) 1290

(4) 648

## Directions: (Question Nos. 42-45):

In the following figure, there are given some rectangles which represent the particular qualities. Read the questions and find out the appropriate answer from the figure :



| 42.                      | The poet, who                        | is neither a singer                      | nor a teacher, is:                             |                                                                |             |
|--------------------------|--------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------|
|                          | (1) D                                | (2) E                                    | (3) G                                          | (4) A                                                          |             |
| 43.                      | The teacher, w                       | ho is singer and po                      | oet, both is :                                 |                                                                |             |
|                          | (1) A                                | (2) B                                    | (3) C                                          | (4) D                                                          |             |
| 44.                      |                                      | ho is a singer but <i>n</i>              | <del>-</del>                                   |                                                                |             |
|                          | (1) A                                | (2) B                                    | (3) C                                          | (4) D                                                          |             |
| 45.                      |                                      | ho is neither a singe                    | -                                              | (4) C                                                          |             |
| D:                       | (1) A                                | (2) B                                    | (3) D                                          | (4) G                                                          |             |
|                          | tions : (Questio<br>These suestion   |                                          | ha'fallawina diaawa                            | n in which the trian                                           | _1          |
| repre<br>circle<br>the d | sents female gra<br>represents self- | aduates, small circl<br>employed females | e represents self-emp<br>with bank loan facili | loyed females and the ty. Numbers are shownese numbers, answer | big<br>n in |
| 46.                      | How many no                          | n-graduate females                       | s are self-employed?                           |                                                                |             |
|                          | (1) 11                               | (2) 9                                    | (3) 12                                         | (4) 21                                                         |             |
| 47.                      | •                                    | nale graduates are                       | • -                                            | (-)                                                            |             |
|                          |                                      |                                          |                                                | <del></del>                                                    |             |
|                          | (1) 12                               | (2) 13                                   | (3) 20                                         | (4) 15                                                         |             |
| 48.                      | How many fer                         | nale graduates are                       | not self-employed?                             |                                                                |             |
|                          | (1) 4                                | (2) 10                                   | (3) 12                                         | (4) 15                                                         |             |
| 49.                      | How many no                          | n-graduate self-em                       | ployed females are w                           | ith bank loan facility?                                        |             |
|                          | (1) 3                                | (2) 8                                    | (3) 9                                          | (4) 12                                                         |             |
|                          |                                      |                                          | - ·                                            |                                                                |             |

(1) 5

(1) Impulse

|     | $(1)  \frac{2u\sin\alpha}{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(2)  \frac{2u^2\sin\alpha}{g}$   | $(3)  \frac{u \sin \alpha}{g}$  | $(4) \ \frac{u^2 \sin^2 \alpha}{g}$                                            |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|--------------------------------------------------------------------------------|--|--|
| 53. | tower, one vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                 | other vertically down           | ocity from the top of<br>nwards. If they reach<br>of tower is:                 |  |  |
|     | (1) $\frac{1}{2}gt_1t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(2) \ \frac{1}{2}g(t_1^2+t_2^2)$ | (3) $\frac{1}{2}g(t_2^2-t_1^2)$ | $(4) \ \frac{1}{2}g(t_1+t_2)^2$                                                |  |  |
| 54. | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                 | of 5 m and 20 m en by $B$ , to reach the                                       |  |  |
|     | (1) 1:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2) 2:1                           | (3) 1:2                         | (4) 1:1                                                                        |  |  |
| 55. | <b>5.</b> A train starts, from station $A$ with uniform acceleration $f_1$ for some distance and then goes with uniform retardation $f_2$ for some more distance to come to rest at station B. The distance between the stations A and B is 4 km and the train takes 4 minutes to complete this journey. If $f_1$ and $f_2$ are in km - minute units, then $\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{f_1} + \frac{1}{f_2} $ |                                   |                                 |                                                                                |  |  |
| 56. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l 12 m in third and fo            |                                 | celeration. It covers ively, then the initial                                  |  |  |
|     | (1) 2 m/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) 3 m/sec                       | (3) 4 m/sec                     | (4) 5 m/sec                                                                    |  |  |
| 57. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e the angles between              |                                 | and if $60^{\circ}$ , $150^{\circ}$ , $150^{\circ}$ and $C$ and $A$ , then the |  |  |
|     | (1) $\sqrt{3}:1:1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) $1:1:\sqrt{3}$                | (3) $1:\sqrt{3}:1$              | (4) 1:2.5:2.5                                                                  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (8)                               |                                 |                                                                                |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                 |                                                                                |  |  |

50. How many self-employed female graduates are with bank loan facility?

**52.** A particle is projected with initial velocity u and making an angle  $\alpha$  with the

(3) 20

(3) Energy

(4) 7

(4) Power

(2) 12

(2) Work

**51.** The rate of doing work per unit of time is called:

horizontal, its time of flight will be given by :

| 58. | A horizontal rod AB is suspended at its ends by two vertical strings. The rod is of length 0.6 metre and weights 3 units. Its centre of gravity G is at a distance 0.4 metre from A. Then the tension of string at A, in same unit is: |                                                                      |       |                                  |        |                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|----------------------------------|--------|----------------------|
|     | (1) 0.2                                                                                                                                                                                                                                | (2) 0.8                                                              | (3)   | 1.4                              | (4)    | 1.0                  |
| 59. |                                                                                                                                                                                                                                        | W acting at a point (2 positive $x$ and $y$ -ax at the origin is:    |       |                                  | -      |                      |
|     | (1) 8 W                                                                                                                                                                                                                                | (2) $-3 W$                                                           | (3)   | 3 W                              |        | (4)-8 W              |
| 60. | and Q be interchar                                                                                                                                                                                                                     | orces $P$ and $Q$ act on aged in position, shed through a distandard | าดพ   | that the point of                | of ap  | -                    |
|     | $(1)  \frac{P+Q}{P-Q}AB$                                                                                                                                                                                                               | $(2)  \frac{P-Q}{P+Q}AB$                                             | (3)   | $\frac{2P+Q}{2P-Q}AB$            | (4)    | $\frac{P-Q}{2P+Q}AB$ |
| 61. | are in the ratio :                                                                                                                                                                                                                     | Rare acting at a poir<br>nd 120° respectively                        | , the | n for the equilib                |        |                      |
|     | <ul><li>(1) 1:2:3</li><li>(3) 3:2:1</li></ul>                                                                                                                                                                                          |                                                                      |       | $1:2:\sqrt{3}$<br>$\sqrt{3}:2:1$ |        |                      |
| 62. | If the resultant of tween t                                                                                                                                                                                                            | wo forces of magnitu<br>he forces is :                               | ıdes  | P and 2P is perp                 | pend   | icular to P, then    |
|     | $(1) \ \frac{2\pi}{3}$                                                                                                                                                                                                                 | (2) $\frac{3\pi}{4}$                                                 | (3)   | $\frac{4\pi}{5}$                 | (4)    | $\frac{5\pi}{6}$     |
| 63. | Inequations $3x - y$                                                                                                                                                                                                                   | $\ge 3 \text{ and } 4x - y > 4$ :                                    |       |                                  |        |                      |
|     | (1) have solution for                                                                                                                                                                                                                  | or positive $x$ and $y$                                              | (2)   | have no solutio                  | n for  | positive $x$ and $y$ |
|     | (3) have solution for                                                                                                                                                                                                                  | or all x                                                             | (4)   | have solution for                | or all | l y                  |
| 64. | Which of the terms (1) Slack variables (3) Concave region                                                                                                                                                                              | is <i>not</i> used in a line                                         | (2)   | Objective funct                  | ion    | ι?                   |
| 65. | •                                                                                                                                                                                                                                      |                                                                      |       |                                  |        |                      |

(9) P.T.O.

| 66. | -          | which the maximum vary $y \ge 0$ is obtained: | lue of $(3x + 2y)$ | subject to the constraints       |
|-----|------------|-----------------------------------------------|--------------------|----------------------------------|
|     | (1) (0, 0) | (2) (1.5, 1.5)                                | (3) (2,0)          | (4) (0, 2)                       |
| 67. | becomes:   |                                               | a normal distr     | ribution when frequency (4) zero |

**68.** If r is the coefficient of correlation, then:

(1) 
$$r \ge 1$$
 (2)  $r \le 1$  (3)  $|r| \ge 1$  (4)  $|r| \le 1$  **69.** For a frequency distribution, the mean deviation about mean is computed by :

(1) M. D. = 
$$\frac{\sum d_i}{\sum f_i}$$
 (2) M. D. =  $\frac{\sum f_i d_i}{\sum f_i}$ 

(3) M. D. = 
$$\frac{\sum f_i |d_i|}{\sum f_i}$$
 (4) M. D. =  $\frac{\sum f_i}{\sum f_u |d_i|}$ 

**70.** Which of the following is *not* a measure of dispersion?

- (1) variance
- (2) mean deviation
- (3) standard-deviation
- (4) mode

71. The mean of discrete observations:

 $y_1, y_2, y_3, \dots, y_n$  is given by:

(1) 
$$\frac{\sum_{i=1}^{n} y_i}{n}$$
 (2) 
$$\frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} i}$$
 (3) 
$$\frac{\sum_{i=1}^{n} y_i f_i}{n}$$
 (4) 
$$\frac{\sum_{i=1}^{n} y_i f_i}{\sum_{i=1}^{n} f_i}$$

**72.** The relationship between mean, median and mode for a moderately skewed distribution is:

- distribution is:
  (1) mode = median 2 mean
  (2) mode = 2 median mean
  - (3) mode = 3 median 2 mean (4) mode = 2 median 3 mean

**73.** Two cards are drawn one by one at random from a pack of 52 cards. The probability that both of them are king, is:

(1) 
$$\frac{2}{13}$$
 (2)  $\frac{1}{169}$  (3)  $\frac{1}{221}$  (4)  $\frac{30}{221}$ 

|     |                            |          |             |       | 10P/203/2                                       | 1(Set-II) |
|-----|----------------------------|----------|-------------|-------|-------------------------------------------------|-----------|
| 74. | probabilities              | -        | d B occur   |       | and 0.50 respectivel<br>aneously is 0.14. Th    | •         |
|     | (1) 0.39                   | (2) 0.25 | (3)         | 0.11  | (4) 0.06                                        |           |
| 75. | The angle of height of the |          | when the sl | nadow | of the pole is $\sqrt{3}$ time                  | nes the   |
|     | (1) 60°                    | (2) 30°  | (3)         | 45°   | (4) 15°                                         |           |
| 76. | •                          |          | -           | -     | int on the ground is 30<br>elevation becomes 60 |           |

the height of the tower is: (1) 20 metres (2) 10 metres

(3)  $10\sqrt{3}$  metres

(4)  $\frac{10}{\sqrt{3}}$  metres

77. In a  $\triangle$  ABC, if  $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$  and the side a = 2, then the area of the triangle is:

(1) 1

(2) 2

(3)  $\frac{\sqrt{3}}{2}$ 

(4)  $\sqrt{3}$ 

**78.** The value of  $\cos \left[ \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2} \right]$  is equal to:

(1)  $\frac{1}{\sqrt{2}}$  (2)  $\frac{\sqrt{3}}{2}$ 

(3)  $\frac{1}{2}$ 

(4)  $\frac{\pi}{4}$ 

**79.** If  $\sin^2 \theta - 2\cos \theta + \frac{1}{4} = 0$ , then the general value of  $\theta$  is:

(1)  $n\pi \pm \frac{\pi}{3}$  (2)  $2n\pi \pm \frac{\pi}{3}$  (3)  $2n\pi \pm \frac{\pi}{6}$  (4)  $n\pi \pm \frac{\pi}{6}$ 

The value of cos 15° is equal to: 80.

(1)  $\pm \sqrt{\frac{1-\cos 30^{\circ}}{2}}$  (2)  $\pm \sqrt{\frac{1+\cos 30^{\circ}}{2}}$  (3)  $\sqrt{\frac{1-\cos 30^{\circ}}{2}}$  (4)  $\sqrt{\frac{1+\cos 30^{\circ}}{2}}$ 

**81.** If  $\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}$ ,  $\vec{b} = -3\hat{i} + 7\hat{j} - 3\hat{k}$  and  $\vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$  are three coterminus edges of a parallelopiped, then its volume is:

(1) 108

(2) 210

(3) 272

(4) 308

**82.** A tetrahedron has vertices at O(0, 0, 0), P(1, 2, 1), Q(2, 1, 3) and R(-1, 1, 2). Then the angle between the faces OPQ and POR will be:

(1) 30°

(2) 90°

(3)  $\cos^{-1}\left(\frac{19}{35}\right)$  (4)  $\cos^{-1}\left(\frac{71}{31}\right)$ 

If the vectors  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  from the sides BC, CA and AB respectively, of a triangle ABC, then:

(1)  $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = 0$ 

(2)  $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ 

(3)  $\overrightarrow{a} \cdot \overrightarrow{h} = \overrightarrow{h} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a}$ 

(4)  $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 0$ 

**84.** If  $\vec{a} + \vec{b} = \vec{b} \times \vec{c} \neq 0$ , where  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  are coplaner vectors, then for some scalar

(1)  $\overrightarrow{a} + \overrightarrow{c} = k \overrightarrow{b}$  (2)  $\overrightarrow{a} + \overrightarrow{b} = k \overrightarrow{c}$  (3)  $\overrightarrow{b} + \overrightarrow{c} = k \overrightarrow{a}$  (4)  $\overrightarrow{b} + \overrightarrow{c} = \frac{k}{3}$ 

**85.** If  $\overrightarrow{a}$ ,  $\overrightarrow{b}$ ,  $\overrightarrow{c}$  are the position vectors of the vertices A, B, C of the triangle ABC, then the centroid of triangle ABC is:

(1)  $\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{3}$  (2)  $\frac{1}{2}\left(\overrightarrow{a}+\frac{\overrightarrow{b}+\overrightarrow{c}}{3}\right)$  (3)  $\overrightarrow{a}+\frac{\overrightarrow{b}+\overrightarrow{c}}{2}$  (4)  $\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{2}$ 

The solution of the differential equation  $x \log x \frac{dy}{dx} + y = 2 \log x$  is:

(1)  $y = \log x + c$ 

(2)  $y = \log x^2 + c$ 

(3)  $y \log x = (\log x)^2 + c$ 

(4)  $y = x \log x + c$ 

Solution of differential equation  $2xy\frac{dy}{dx} = x^2 + 3y^2$  is:

(1)  $x^3 + y^2 = ex^2$  (2)  $\frac{x^2}{2} + \frac{y^3}{2} = y^2 + c$  (3)  $x^2 + y^3 = cx^2$  (4)  $x^2 + y^2 = cx^3$ 

where c is a constant.

An integrating factor for the differential equation  $(1+y^2)dx - (\tan^{-1}y - x)dy = 0$ , is:

(1)  $tan^{-1} y$ 

 $(2) e^{\tan^{-1}y}$ 

(3)  $\frac{1}{1+v^2}$  (4)  $\frac{1}{x(1+v)}$ 

**89.** The solution of differential equation  $\frac{dy}{dx} = \frac{y-x}{y+x}$  is:

(1) 
$$\log_e(x^2 + y^2) + 2\tan^{-1}\frac{y}{x} + c = 0$$
 (2)  $\frac{y^2}{2} + y = xy - \frac{x^2}{2} + c$ 

(2) 
$$\frac{y^2}{2} + y = xy - \frac{x^2}{2} + c$$

(3) 
$$\left(1 + \frac{x}{y}\right)y = \left(1 - \frac{x}{y}\right)x + c$$

$$(4) \quad y = x - 2\log_e y + c$$

**90.** The solution of  $\frac{dy}{dx} = e^x(\sin x + \cos x)$  is:

$$(1) \quad y = e^x(\sin x - \cos x) + c$$

(2) 
$$y = e^x(\cos x - \sin x) + c$$

$$(3) \quad y = e^x \sin x + c$$

(4) 
$$y = e^x \cos x + c$$

**91.** If r radius of the base, h height and  $\alpha$  is semi-vertical angle of the cone, then its volume and surface are:

(1) 
$$\pi r^2 h$$
;  $\frac{1}{3}\pi h^2 \tan \alpha \sec \alpha$ 

(2) 
$$\frac{1}{3}\pi r^2 h$$
;  $\pi h^2 \tan \alpha \sec \alpha$ 

(3) 
$$\frac{1}{2}\pi r^2 h$$
;  $\frac{1}{2}\pi h^2 \tan \alpha \sec \alpha$ 

(4) 
$$\pi r^2 h$$
;  $2\pi h^2 \tan \alpha \sec \alpha$ 

**92.** If *r* is the radius of a sphere, then its volume and surface are :

(1) 
$$\frac{1}{3}\pi r^3$$
;  $2\pi r^2$ 

(2) 
$$\frac{2}{3}\pi r^3$$
;  $3\pi r^2$ 

(3) 
$$\frac{4}{3}\pi r^3$$
;  $4\pi r^2$ 

(1) 
$$\frac{1}{3}\pi r^3$$
;  $2\pi r^2$  (2)  $\frac{2}{3}\pi r^3$ ;  $3\pi r^2$  (3)  $\frac{4}{3}\pi r^3$ ;  $4\pi r^2$  (4)  $\frac{3}{4}\pi r^3$ ;  $3\pi r^2$ 

**93.** The value of  $\int_0^{\pi/2} \log \sin x dx$  is equal to :

(1) 
$$\pi \log \frac{1}{2}$$

(2) 
$$-\pi \log \frac{1}{2}$$
 (3)  $\frac{\pi}{2} \log 2$  (4)  $-\frac{\pi}{2} \log 2$ 

$$(3) \ \frac{\pi}{2} \log 2$$

$$(4) -\frac{\pi}{2}\log 2$$

**94.** The value of  $\int \frac{x-1}{(x-2)(x-3)} dx$  is equal to:

(1) 
$$-\log(x-2)+2\log(x-3)$$

(2) 
$$\log(x-2) - 2\log(x-3)$$

(3) 
$$-\log(x-2) + \log(x-3)$$

(4) 
$$\log(x-2) - \log(x-3)$$

**95.** The value of  $\int \frac{dx}{\cos^2 x(1-\tan x)^2}$  is equal to:

$$(1) \quad \frac{1}{\tan x - 1} + c$$

$$(2) \quad \frac{1}{1-\tan x} + c$$

(3) 
$$-\frac{1}{3(1-\tan x)^3}+c$$

$$(4) \quad -\frac{1}{5(1-\tan x)^5} + c$$

## 10

| )3/21(Set-II)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If $\int x \sin x = -x \cos x$           | $+\alpha$ , then $\alpha$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) $\sin x + c$                         | (2) $\cos x + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4) $\sin x \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The minimum valu                         | e of $_e(2x^2-2x+1)\sin$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n^2 x$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) e                                    | $(2) \ \frac{1}{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Let $f(x) = \frac{x^2 - 1}{x^2 + 1}$ , f | or every real numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{r}$ $x$ , then the minimu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m value of $f$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The maximum valu                         | ne of $\frac{(5+x)(2+x)}{1+x}$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or non-negative real :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (1) 12                                   | (2) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The maximum valu                         | te of $f(\theta) = a \sin \theta + b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\cos \theta$ is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) $\frac{a}{b}$                        | $(2)  \frac{a}{\sqrt{a^2 + b^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3) $\sqrt{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(4)  \sqrt{a^2 + b^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The normal to the                        | curve $x = a(\cos\theta + \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sin \theta$ ), $y = a(\sin \theta - \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\cos\theta$ ) at any point $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| is such that it:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) passes through                       | the origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (2) is at constant d                     | istance from the orig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>j</i> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3) makes a consta                       | nt angle with the x-a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (4) makes a consta                       | nt angle with the y-a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ixis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rve $y(x-2)(x-3)-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x+7=0 at the point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) $y = 4x - 144$                       | (2) $3x-2y=2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3) $y+2x=140$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)  y - 2x = 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The straight line $\frac{x}{a}$          | $+\frac{y}{b} = 1$ touches the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | curve $y = be^{-x/a}$ at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne point :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (1) Where it crosse                      | es the x-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2) Where it crosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es the <i>y</i> -axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (3) (0, 0)                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) (1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          | If $\int x \sin x = -x \cos x$ (1) $\sin x + c$ The minimum value  (1) $e$ Let $f(x) = \frac{x^2 - 1}{x^2 + 1}$ , for the equation of the where it cuts the ax  (1) $\frac{a}{b}$ The normal to the is such that it:  (1) passes through  (2) is at constant do  (3) makes a constant do  (4) makes a constant do  (5) makes a constant do  (6) makes a constant do  (7) $\frac{a}{b}$ The equation of the equati | If $\int x \sin x = -x \cos x + \alpha$ , then $\alpha$ is:  (1) $\sin x + c$ (2) $\cos x + c$ The minimum value of $e^{(2x^2 - 2x + 1)}\sin^2(1)$ (2) $\frac{1}{e}$ Let $f(x) = \frac{x^2 - 1}{x^2 + 1}$ , for every real number (1) does not exist because $f$ is unbound (2) is not attained even through $f$ is bound (3) is equal to 1  (4) is equal to -1  The maximum value of $\frac{(5+x)(2+x)}{1+x}$ for (1) 12 (2) 10  The maximum value of $f(\theta) = a \sin \theta + b$ (1) $\frac{a}{b}$ (2) $\frac{a}{\sqrt{a^2 + b^2}}$ The normal to the curve $x = a(\cos \theta + \theta)$ is such that it:  (1) passes through the origin  (2) is at constant distance from the origin  (3) makes a constant angle with the $x$ -axis  (4) makes a constant angle with the $y$ -axis of $x$ is:  (1) $y = 4x - 144$ (2) $3x - 2y = 2$ The straight line $\frac{x}{a} + \frac{y}{b} = 1$ touches the $x$ -axis | If $\int x \sin x = -x \cos x + \alpha$ , then $\alpha$ is:  (1) $\sin x + c$ (2) $\cos x + c$ (3) $c$ The minimum value of $e^{(2x^2 - 2x + 1)\sin^2 x}$ is:  (1) $e$ (2) $\frac{1}{e}$ (3) 1  Let $f(x) = \frac{x^2 - 1}{x^2 + 1}$ , for every real number $x$ , then the minimum (1) does not exist because $f$ is unbounded (2) is not attained even through $f$ is bounded (3) is equal to 1  (4) is equal to -1  The maximum value of $\frac{(5+x)(2+x)}{1+x}$ for non-negative real $f$ (1) 12 (2) 10 (3) 9  The maximum value of $f(\theta) = a \sin \theta + b \cos \theta$ is:  (1) $\frac{a}{b}$ (2) $\frac{a}{\sqrt{a^2 + b^2}}$ (3) $\sqrt{ab}$ The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$ , $y = a(\sin \theta - \theta \sin \theta)$ is such that it:  (1) passes through the origin (2) is at constant distance from the origin (3) makes a constant angle with the $f$ -axis (4) makes a constant angle with the $f$ -axis The equation of the normal to the curve $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (8) $f$ (8) $f$ (9) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (6) $f$ (7) $f$ (8) $f$ (8) $f$ (9) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (8) $f$ (8) $f$ (8) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (4) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (8) $f$ (8) $f$ (8) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (2) $f$ (3) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (8) $f$ (8) $f$ (8) $f$ (8) $f$ (8) $f$ (9) $f$ (8) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (8) $f$ (8) $f$ (9) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (7) $f$ (8) $f$ (9) $f$ (8) $f$ (9) $f$ (8) $f$ (9) $f$ (9) $f$ (9) $f$ (1) $f$ (1) $f$ (1) $f$ (1) $f$ (2) $f$ (3) $f$ (3) $f$ (4) $f$ (4) $f$ (5) $f$ (7) $f$ (7) $f$ (7) $f$ (8) $f$ ( |

- The tangent line is perpendicular to the x-axis to the curve  $x = t^2 1$ ,  $y = t^3 t$ , at the point:
  - (1)  $t = -\frac{1}{\sqrt{3}}$  (2) t = 0 (3)  $t = \frac{1}{\sqrt{3}}$  (4)  $\infty$

- 105. If  $y = \sqrt{\frac{1 + \tan x}{1 \tan x}}$ , then  $\frac{dy}{dx}$  is equal to:
  - $(1) \quad \frac{1}{2} \sqrt{\frac{1-\tan x}{1+\tan x}} \sec^2\left(\frac{\pi}{4} + x\right)$   $(2) \quad \sqrt{\frac{1-\tan x}{1+\tan x}} \sec^2\left(\frac{\pi}{4} + x\right)$
- - (3)  $\frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}}\sec\left(\frac{\pi}{4}+x\right)$  (4)  $\sqrt{\frac{1-\tan x}{1+\tan x}}\sec\left(\frac{\pi}{4}+x\right)$
- **106.** The value of  $\frac{d}{dx}[\log(\log x)]$  is equal to:
  - $(1) (x \log x)^{-1} \qquad (2) x \log x$
- $(3) \frac{x}{\log x} \qquad (4) \frac{\log x}{x}$
- **107.** The function  $f(x) = \frac{x-1}{1+e^{1/(x-1)}}, x \neq 0$  is continuous for x = 1 when f(1) equals:
  - (1) 0
- (2) 1
- (4) 3
- 108. Find the limit of the function  $\frac{\tan x \sin x}{\sin^3 x}$  as  $x \to 0$ :
  - (1) 0
- (2)  $\frac{1}{2}$
- (3) 1
- (4) ∞

- 109. The value of  $\lim_{x\to a} \frac{x^n \alpha^n}{x \alpha}$  is equal to:
  - (1) 0
- (2) 1

- (3) log α
- The locus of the pole of normal chords of hyperbola  $\frac{x^2}{a^2} \frac{y^2}{a^2} = 1$  is:
  - (1)  $\frac{a^2}{x^2} \frac{b^2}{v^2} = (a^2 b^2)^2$

(2)  $\frac{a^4}{x^2} - \frac{b^4}{v^2} = (a^2 - b^2)$ 

(3)  $\frac{a^6}{x^2} - \frac{b^6}{v^2} = (a^2 + b^2)^2$ 

(4)  $\frac{a^4}{v^2} - \frac{b^4}{v^2} = a^2 + b^2$ 

(1) al + bm = n

(3) al - bm = n

(1)  $p^2 = a^2 \sin^2 \alpha - b^2 \cos^2 \alpha$ 

| 113. | The locus of the mi                                   | ddle points of chord                                  | s of     | ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$       | ≈1, which are drawn                                   |
|------|-------------------------------------------------------|-------------------------------------------------------|----------|---------------------------------------------------|-------------------------------------------------------|
|      | through the positiv                                   | e end of the minor a                                  | xis i    | s:                                                |                                                       |
|      | (1) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{a}$ | (2) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{y}{b}$ | (3)      | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{b}$ | (4) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{y}{a}$ |
| 114. | The focal distance                                    | of any point $P(x_1, y_1)$                            | ) on     | the parabola $y^2$                                | =4ax is equal to:                                     |
|      | (1) $x_1 + y_1$                                       |                                                       |          | $ax_1$                                            | (4) $a + x_1$                                         |
| 115. | The vertex of the p                                   | arabola $y^2 - 4y - 2x$                               | -8=      | 0 is at the point                                 | t <b>:</b>                                            |
|      | (1) (-6, 2)                                           | (2) $\left(-\frac{11}{2},2\right)$                    | (3)      | $(\frac{1}{2}, 0)$                                | (4) $\left(-\frac{13}{2}, 2\right)$                   |
| 116. | The line, represent                                   |                                                       | $ax^2 +$ | $-2hxy+by^2+2g$                                   | x+2fy+c=0 will be                                     |
|      | (1) $f^2 + g^2 = c(b - a)$                            | v                                                     | (2)      | $f^4 + g^2 = c(bf^2)$                             | $(+ag^2)$                                             |
|      | (3) $f^4 - g^4 = c(bf^2)$                             | $-ag^2$                                               | (4)      | $f^2 + g^2 = af^2 +$                              | bg <sup>2</sup>                                       |
| 117. | If $\lambda x^2 - 10xy + 12y^2$                       | $x^2 + 5x - 16y - 3 = 0$ re                           | pres     | ents a pair of str                                | raight line, then $\lambda$ is :                      |
|      | (1) 1                                                 | (2) 2                                                 | (3)      | 3                                                 | (4) -1                                                |
| 118. | distance of one uni                                   | t from the origin is :                                |          |                                                   | coordinate axis at a                                  |
|      | (1) $x^2 + y^2 - 2x - 2$                              | y+1=0                                                 | (2)      | $x^2+y^2-2x-2$                                    | y-1=0                                                 |
|      | $(3)  x^2 + y^2 - 2x - 2$                             | <i>y</i> = 0                                          | (4)      | $x^2 + y^2 + 2x + 2$                              | y = 0                                                 |
| 119. | If a circle whose ce circle is:                       | ntre is (1, -3) touch                                 | the l    | ine $3x-4y=5$ , (                                 | then the radius of the                                |
|      | (1) 2                                                 | (2) 4                                                 | (3)      | $\frac{5}{2}$                                     | (4) $\frac{7}{2}$                                     |
|      |                                                       | ( 16 )                                                | }        |                                                   |                                                       |

111. If the line lx + my = n touches the hyperbola  $\frac{x^2}{\sigma^2} - \frac{y^2}{h^2} = 1$  if:

112. The straight line  $x \cos \alpha + y \sin \alpha = p$  touches the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  if:

(3)  $p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha$  (4)  $p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha$ 

 $(2) \quad a^2 l^2 + b^2 m^2 = n^2$ 

 $(4) \quad a^2l^2 - b^2m^2 = n^2$ 

 $(2) \quad p^2 = a^2 \sin^2 \alpha + b^2 \cos^2 \alpha$ 

|               | (1) Parallel                                |                                                                          | (2) Inclined at 60°                                       | to each other                                         |
|---------------|---------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
|               | (3) Perpendicular                           | to each other                                                            | (4) Inclined at 30°                                       | to each other                                         |
| I <b>2</b> 1. | triangle ABC, then                          | ) and $F$ (3, 3) are mid<br>the equation of $AB$ is<br>(2) $3x + y = 12$ | s :                                                       | BC, CA and AB of the  (4) $x-y=0$                     |
|               |                                             |                                                                          |                                                           |                                                       |
| 122.          | (0, $a \cos \theta$ ) from the              | •                                                                        | ie line joining the p                                     | oints ( $a \sin \theta$ , 0) and                      |
|               | $(1) \ \frac{a}{2}$                         |                                                                          | (2) $\frac{1}{2}a \left(\sin \theta + \cos \theta\right)$ | ; θ)                                                  |
|               | (3) $a(\sin \theta + \cos \theta)$          |                                                                          | (4) a                                                     |                                                       |
| 123.          | If the vertices of a the quadrilateral A    | -                                                                        | (0, 0), B (3, 4), C (7,                                   | 7), and <i>D</i> (4, 3), then                         |
|               | (1) Parallelogram                           | (2) Rectangle                                                            | (3) Square                                                | (4) Rhombus                                           |
| 124.          | •                                           | B have the co-ordinaties the relation AO -                               |                                                           | respectively and O is locus of O is:                  |
|               | $(1) \ 12x^2 + 4y^2 = 3$                    |                                                                          | $(2) 12x^2 - 4y^2 = 3$                                    |                                                       |
|               | (3) $12x^2 + 4y^2 + 3 = $                   | = 0                                                                      | $(4)  12x^2 - 4y^2 + 3$                                   | = 0                                                   |
| 125.          | Let $A = \{a, b, c\}$ and subset of:        | d $B = \{1, 2\}$ . Conside                                               | r a relation from set                                     | A to set $B$ . Then $R$ is                            |
|               | (1) A                                       | (2) B                                                                    | (3) $A \times B$                                          | (4) $B \times A$                                      |
| 126.          | students have passe<br>in Physics only is : | ed in Physics. Then                                                      | the number of stude                                       | Mathematics and 67 onts who have passed               |
|               | (1) 22                                      |                                                                          | (3) 10                                                    | (4) 45                                                |
| 127.          |                                             | -empty subsets of {1                                                     |                                                           |                                                       |
|               | (1) 14                                      | (2) 15                                                                   | (3) 16                                                    | (4) 17                                                |
| 128.          |                                             |                                                                          |                                                           | of subsets of the first diset. The values of <i>m</i> |
|               | (1) 7, 6                                    | (2) 6, 3                                                                 | (3) 5, 1                                                  | (4) 8,7                                               |
|               |                                             | ( 17 )                                                                   | 1                                                         | P.T.O.                                                |

**120.** If  $\frac{1}{ab'} + \frac{1}{ba'} = 0$ , then the lines  $\frac{x}{a} + \frac{y}{b} = 1$  and  $\frac{x}{b'} + \frac{y}{a'} = 1$  are:

- Suppose  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_{30}$  are thirty sets each having 5 elements and  $B_1, B_2, B_3, \dots, B_n$  are n sets each having 3 elements, let  $\bigcup_{i=1}^{n} A_i - \bigcup_{i=1}^{n} B_i = s$  and each element of s belongs to exactly 10 of  $A_i$ 's and exactly 9 of  $B_j$ 's Then n is equal to:
  - (1) 15
- (2) 3
- (3) 45
- (4) 60
- **130.** Let  $A = \{x : x \text{ is a multiple of } 3\}$  and  $B = \{x : x \text{ is a multiple of } 5\}$ . Then  $A \cap B$  is given by:
  - (1)  $\{3, 6, 9, \dots\}$

(2) {5, 10, 15, 20, ...}

(3) {15, 30, 45, ...}

- **131.** If 2x+3y-5z=7, x+y+z=6, 3x-4y+2z=1, then x is equal to :

  - (1)  $\begin{vmatrix} 2 & -5 & 7 \\ 1 & 1 & 6 \\ 3 & 2 & 1 \end{vmatrix} \div \begin{vmatrix} 7 & 3 & -5 \\ 6 & 1 & 1 \\ 1 & -4 & 2 \end{vmatrix}$  (2)  $\begin{vmatrix} -7 & 3 & -5 \\ -6 & 1 & 1 \\ -1 & -4 & 2 \end{vmatrix} \div \begin{vmatrix} 2 & 3 & -5 \\ 1 & 1 & 1 \\ 3 & -4 & 2 \end{vmatrix}$
  - (3)  $\begin{vmatrix} 7 & 3 & -5 \\ 6 & 1 & 1 \\ 1 & 4 & 2 \end{vmatrix} \div \begin{vmatrix} 2 & 3 & -5 \\ 1 & 1 & 1 \\ 2 & 4 & 2 \end{vmatrix}$  (4)  $\begin{vmatrix} -5 & 2 & 7 \\ 1 & 6 & 1 \\ 2 & 2 & 1 \end{vmatrix} \div \begin{vmatrix} 7 & 3 & 5 \\ 6 & 1 & 1 \\ 1 & 4 & 2 \end{vmatrix}$
- **132.** If A is a singular matrix, then Adj A is:
  - (1) Symmetric
- (2) Singular
- (3) Non-singular (4) Not defined

133. The value of the determinant

$$\begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix}$$
 is:

- (1) 2

- (2)  $x^2 + 2$  (3) -2 (4)  $x^2 1$
- **134.** If  ${}^{15}C_{3r} = {}^{15}C_{r+3}$ , then *r* is equal to :
  - (1) 6
- (3) 4
- (4) 3

- **135.** The value of  ${}^{n}P_{r}$  is equal to:
  - (1)  $^{n-1}P_r + r. ^{n-1}P_{r-1}$
- (2)  $n \cdot {^{n-1}P_r} + {^{n-1}P_{r-1}}$
- (3)  $n \left( {^{n-1}P_r + {^{n-1}P_{r-1}}} \right)$
- $(4)^{-n-1}P_{r-1} + {}^{n-1}P_r$

|      |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | 10.7200721(001-11)                       |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| 136. | Given positive int                                                                                         | tegers $r > 1$ and $n$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 2 and that co-eff                                          | ficients of $(3r)^{th}$ and              |  |  |  |  |  |
|      | $(r+2)^{th}$ terms in the binomial expansion of $(1+x)^{2n}$ are equal, then:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                          |  |  |  |  |  |
|      |                                                                                                            | (2)  n = 3r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                          |  |  |  |  |  |
| 137. | If the A. M. and orespectively, then                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f a quadratic equat                                          | ion in $x$ are $p$ and $q$               |  |  |  |  |  |
|      | $(1)  x^2 - 2px + q^2 =$                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) $x^2 + 2px + q^2 =$                                      | : 0                                      |  |  |  |  |  |
|      | (3) $x^2 - px + q = 0$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4) $x^2 - 2px + q = 0$                                      | )                                        |  |  |  |  |  |
| 138. |                                                                                                            | an even number of tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | ll the terms is 5 times<br>tio will be : |  |  |  |  |  |
|      | (1) 2                                                                                                      | (2) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3) 4                                                        | (4) 5                                    |  |  |  |  |  |
| 139. | If $G$ be the Geomet                                                                                       | ric Mean of $x$ and $y$ , t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | then $\frac{1}{G^2 - x^2} + \frac{1}{G^2 - x^2}$             | $\frac{1}{y^2}$ is equal to:             |  |  |  |  |  |
|      | (1) $G^2$                                                                                                  | (2) $\frac{1}{G^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) $\frac{2}{G^2}$                                          | (4) 3G <sup>2</sup>                      |  |  |  |  |  |
| 140. | If the 10th term of a G. P. is 9 and 4th term is 4, then its 7th term is:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                          |  |  |  |  |  |
|      | (1) 6                                                                                                      | (2) 36 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) $\frac{4}{9}$                                            | (4) $\frac{9}{4}$                        |  |  |  |  |  |
| 141. | If $A_1$ , $A_2$ be two arithmetic means between $\frac{1}{3}$ and $\frac{1}{24}$ , then their values are: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                          |  |  |  |  |  |
|      |                                                                                                            | (2) $\frac{17}{72}$ , $\frac{5}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 21                                                         |                                          |  |  |  |  |  |
| 142. | If $n$ th term of an A. P., be $(2n-1)$ , then the sum of first $n$ terms will be:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                          |  |  |  |  |  |
|      | -                                                                                                          | (2) $(2n-1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                            | (4) $n^2 + 1$                            |  |  |  |  |  |
| 143. | The sum of first $n$ natural numbers is:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                          |  |  |  |  |  |
|      |                                                                                                            | $(2)  \frac{n \ (n-1)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) $n(n+1)$                                                 | $(4)  \frac{n(n+1)}{2}$                  |  |  |  |  |  |
| 144. | Series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{3}{3}$                                                       | $\frac{1}{2.4} + \dots + \frac{1}{n(n+1)}$ is e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | qual to :                                                    |                                          |  |  |  |  |  |
|      | $(1)  \frac{1}{n(n+1)}$                                                                                    | $(2) \ \frac{n}{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(3) \ \frac{2n}{n+1}$                                       | $(4)  \frac{2}{n(n+1)}$                  |  |  |  |  |  |
| 145. | If $i = \sqrt{-1}$ , then 4 +                                                                              | $5\left(-\frac{1}{2} + \frac{\sqrt[4]{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{\sqrt[4]{3}}{2}\right)^{344} + 3\left(-\frac{\sqrt[4]{3}}{2} + \frac{\sqrt[4]{3}}{2}\right)^{344} + 3\left(-\frac{\sqrt[4]{3}}{2} + \frac{\sqrt[4]{3}}{2}\right)^{344} + 3\left(-\frac{\sqrt[4]{3}}{2} $ | $-\frac{1}{2} + \frac{\sqrt[4]{3}}{2}\right)^{365}$ is equal | to:                                      |  |  |  |  |  |
|      | (1) $1-i\sqrt{3}$                                                                                          | (2) $-1+i\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(3)  i\sqrt{3}$                                             | $(4) -i\sqrt{3}$                         |  |  |  |  |  |
|      |                                                                                                            | (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | P.T.O.                                   |  |  |  |  |  |

If  $z_1$  and  $z_2$  are two complex numbers (non-zero) such that  $|z_1 + z_2| = |z_1| + |z_2|$ , then  $Arg z_1 - Arg z_2$  is equal to :

(1)  $-\pi$ 

(2)  $-\frac{\pi}{2}$ 

(3) 0

 $(4) \ \frac{\pi}{2}$ 

**147.** If  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$  are the vertices of a square in that order, then:

(1)  $|z_1-z_3| \approx |z_2-z_4|$ 

(2)  $|z_1 - z_3| = |z_1 - z_4|$ 

(3)  $|z_2 - z_3| = |z_1 - z_3|$ 

(4)  $|z_1-z_2|=|z_2-z_4|$ 

The set of values of p for which the roots of the equation  $3x^2 + 2x + p (p-1) = 0$ are of opposite signs is:

(1)  $(-\infty,0)$ 

(2) (0,1)

(3)  $(1, \infty)$  (4)  $(0, \infty)$ 

**149.** The equation  $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$  has:

(1) no root

(2) one root

(3) two equal roots

(4) infinitely many roots

If a root of the equation  $x^2 + px + q = 0$  and  $x^2 + \alpha x + \beta = 0$  is common, then its value will be (where  $p \neq \alpha$  and  $q \neq \beta$ ):

 $(1) \quad \frac{q-\beta}{\alpha-v}$ 

(2)  $\frac{p\beta - \alpha q}{a - \beta}$ 

(3)  $\frac{\alpha-\beta}{a-p}$ 

(4)  $\frac{q-\beta}{\alpha-p}$  or  $\frac{p\beta-\alpha q}{q-\beta}$ 

## अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली। काली बाल-प्वाइंट पेन* से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख ले कि प्रश्नपत्र में सभी पृष्ठ मौजूद है और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ -जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त प्रश्न-पुरितका एवं उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी ।

KEY OF UET/PET- 2010

1-03 (three) marks to be awarded KEY OF VET/PET-2010 for lach correct answer: 2-01 (one) mark to be deducted for lach incorrect answers.

|                                            | (zero) n                                                   | nark to           | be awa          | nded for                                           | each un           | nattempt                      | ed question                     | n.       | Set-             |
|--------------------------------------------|------------------------------------------------------------|-------------------|-----------------|----------------------------------------------------|-------------------|-------------------------------|---------------------------------|----------|------------------|
| Q. A.                                      | Q. A.                                                      | Q. A.             | Q. A.           | Q. A.                                              | Q. A.             |                               |                                 |          |                  |
| 2 3                                        | 21 4.                                                      | 41 3              | 61 <i>Y</i>     | 81 3                                               | 101 2             | Q. A. 121 4                   | Q. A. 141 2                     | Q. A.    | Q. A.            |
| 3 3                                        | 23 3                                                       | 43 4              | 62   1   63   1 | 82 3                                               | 102 3             | 122                           | 142 3                           | 161      | 181              |
| 1 2                                        | 24 4.                                                      | 44 3              | 64 3            | 83 2 .                                             | 103   1   104   2 | 123 4.                        | 143 4                           | 163      | 182              |
| 5 2                                        | 25 2·<br>26 4                                              | 45 2              | 65 ]            | 85 1                                               | 105               | 124 <b>2</b> . 125 <b>3</b> . | 144 2                           | 164      | 184              |
| 7 3                                        | 27 3                                                       | 46 4              | 66 <b>3</b> .   | 86 3.                                              | 106               | 126 4                         | 145 3                           | 165      | 185              |
| 8 1<br>9 3                                 | 28 2                                                       | 48 ]              | 68 4            | $\begin{bmatrix} 87 & 4 \\ 88 & 2 \end{bmatrix}$   | 107   1           | 127 2.                        | 147 ]                           | 167      | 186              |
| 10 4                                       | $\begin{array}{c c} 29 & l \\ \hline 30 & l_l \end{array}$ | 49 3              | 69 3            | 89                                                 | 109 4.            | 128 2-                        | 148 2                           | 168      | 188              |
|                                            |                                                            | 50 2              | 70 4            | 90 3                                               | 110 3.            | 130 3                         | 149   1<br>150   L <sub>f</sub> | 169      | 189              |
| 11 3                                       | $\begin{bmatrix} 31 & 3 \\ 32 & 4 \end{bmatrix}$           | 51 4              | 71 ] .          | 91 2                                               | 111 4.            | 131 3.                        | <u></u>                         | <u></u>  | 190              |
| 13                                         | 33 3.                                                      | 52   1 .          | 72 3.<br>73 3.  | 92 3                                               | 112 4             | 132 2                         | 151                             | 171      | 191              |
| 1+ L <sub>1</sub>                          | 34 3                                                       | 54 3              | 74 1            | 93 <i>L</i> <sub>1</sub> · 94 1                    | 113 2             | 133 3                         | 153                             | 173      | 192              |
| 15   3                                     | 35 2                                                       | 55 2              | 75 2            | 95 2                                               | 114 4             | 134 4                         | 154                             | 174      | 194              |
| 17                                         | 37 3                                                       | 56 4              | 76 3<br>77 4    | 96 1                                               | 116 3             | 136                           | 155                             | 175      | 195              |
| 18 4                                       | 38 2                                                       | 58 1              | 78 1            | $\begin{vmatrix} 97 & 3 \\ 98 & t_1 \end{vmatrix}$ | 117 3             | 137                           | 157                             | 177      | 196              |
| $\frac{19}{20} \left[ \frac{3}{4} \right]$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$     | 59 <i>H</i> 60 2. | 79 2            | 99 3                                               | 119               | 138 <b>3</b><br>139 2         | 158                             | 178      | 198              |
| <u> </u>                                   | <u> </u>                                                   | 60 2              | 80 4            | 100 4                                              | 120 3             | 140                           | 159<br>160                      | 179      | 200              |
|                                            |                                                            |                   |                 |                                                    |                   |                               | <del> !-  </del>                | <u> </u> | L <sup>200</sup> |