M.H.G7

14P/288/

Question Booklet N	0,
--------------------	----

(To be filled up by the candidate by blue/i	black ball-point pen)
Roll No.	
Roll No. (Write the digits in words)	
Serial No. of OMR Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 73. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
 - 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
 - 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
 - 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
 - 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
 - 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
 - For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
 or darken a circle partially, the answer will be treated as incorrect.
 - 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
 - 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- .12. Deposit only the OMR Answer Sheet at the end of the Test.
 - 13. You are not permitted to leave the Examination Hall until the end of the Test.
 - 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

ैं उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं।

No. of Printed Pages: 28+2

2.	The bending of beam of light around corners of obstacles is called					
	(1) reflection	(2) diffraction	(3)	refraction	(4)	interference
3.	How much flux will 600 candel source is	pass through an a s at its centre?	area o	f 0·2m2 on a sph	iere (of radius 50 cm if a
	(1) 120 lumen	(2) 480 lumen	(3)	60 lumen	(4).	560 lumen
4.	The efficiency of a h	eat engine is alw	ays			
	(1) less than one		(2)	more than one		(R)
	(3) unity		(4)	zero		
5.	The Gibbs' tree ener	gy is defined as		8.1 8.41		,
	(1) $G = H - TS$	(2) G = U - TS	(3)	G = U + PV	(4)	$G = H - P \Delta V$
6.	In a reversible proce	ss, the entropy of	fa syn	stem		ē.
	(1) increases		(2)	decreases		
	(3) zero	•	(4)	remains constar	nt	·
7.	The number of node energy level is equal	s is the radial pro to	obabil	ity distribution o	urve	of s-orbital of any
	(1) n-2	(2) n/2	(3)	n-1	(4)	n+1
8.	For a single electron	in an atom the v	wave f	unction is knows	ı as	
	(1) molecular orbital		(2)	atomic orbital		
	(3) electron change	density	(4)	None of the abo	ve	
(164)		. 2	2	100		

9.	Number of molecule is	ar orbitals formed by	the linear combina	ation of two atomic orbitals
	(1) 1	(2) 2	(3) 4.	(4) 6
10.		s into two nuclear par neir nuclear will be	rts, which have the	eir velocity ratio equal 1 to
	(1) 2 ¹¹³ :1	(2) 1:2113	(3) 3 ¹¹² :1	(4) 1:3 ¹¹²
11.	The ratio of minim	um to maximum wa	velength in Balmer	series is
	(1) 5:9	(2) 5:36	(3) 1:4	(4) 3:4
l 2.	Which of the follow	ving is not an electro	omagnetic wave?	
ŧ	(1) Optical rays	e e	(2) Microwave ra	diations
	(3) X-rays	S 60 00	(4) β-ray	41 .
13.	Infrared radiations	are detected by		
	(1) Spectrometer	(2) Pyrometer	(3) Nanometer	(4) Photometer
14.	When absorbed by	molecules, the energ	gy of infrared rays	gets converted into
	(1) molecular vibra	ation	(2) atomic vibrat	ion
	(3) sound vibration	n	(4) None of the	above
15.	CO2-Laser provides	s infrared rays of wa	welength	
	(1) 10-6×10 ⁻⁸ m	(2) 10.6×10^{-9} m	(3) 10·6×10 ⁻⁶ m	(4) 20·3×10 ⁻³ m
54)		3	a	(P.T.O.)
			·	

16.	. A molecule conta	ining three electror	ns bond is	
e.	(1) ClO ₂	(2) BH ₃	(3) CO ₂	(4) NO ₂
17.	Isoelectronic pair	of ions is	•	
	(1) Rb ⁺ , Br	(2) K ⁺ , Rb ⁺	(3) Mg ²⁺ , Ca ²⁺	(4) Cl ⁻ , Br ⁻
18.	Denticity of triam	ino-propane is	9	
	(1) 3	(2) 4	(3) 2	(4) 5
19.	Lewis acid is	e.	N.	
	(1) FeCl ₃	(2) Be(OH) ₂	(3) NH ₃	(4) NiCl ₂
20.	A soft acid is			
	(1) Cu ⁺	(2) C1-	(3) K+ '	(4) Be ²⁺
21.	H ₂ O is conjugate	acid of		6 6
	(I) H ₃ O+	(2) OH-	(3) O ₂ H	(4) O ₂
22.	One of the weakes	t acid is		•
	(1) HF	(2) HCI	(3) HBr	(4) Н
23.	Catalytic decompos	sition of PH3 on h	ot tungsten at higher	pressure have rate la
	(1) V = K	(2) V = K [PH ₃]	(3) V = K [P] [H+]	(4) $V = K (PH_3)^2$
(164)			1	

24.	The process, salt + water = acid + bas	e, is		12		
	The second secon		hydrolysis	(4)	photolysis	
25.	'Oxine' reagent is					
	(1) beta naphthol	(2)	resorcinol			80
	(3) : 8-hydroxyquinoline	(4)	phenol			
26.	In paper chromatography, both station	ary e	nd mobile phase	es ai	re	
	(1) liquid, liquid (2) solid, solid	(3)	liquid, solid	(4)	gas, gas	
27.	Lambert-Beer law is related with	•	٠		51	
	(1) gravimetry	(2)	flame photomet	гу		
	(3) UV-visible spectrophotometry	(4)	IR spectroscopy	•	2	
28.	Tollen's reagent is used for the identifi	icatio	n of			% ÷
	(1) carbohydrate (2) ketone	(3)	aldehyde	(4)	alcohol	
29.	Adipic acid is used in the preparation	of				ā.
82	(1) polyester (2) polyurethane	(3)	Nylon 66	(4)	Nylon 6	
30.	Terylene is a				•	
30.	1373	(2)	cascade polyme	٠r		
	(1) polyamide			2006		
	(3) polyurethane	(4)	polyester			
164		5	29		* 3	(P.T.O.)

5

164)

31.	The first formed chemical compounds	the earth must h	eve been
	(1) glucose and fructose	(2) protein and fat	ty acids
	(3) oxygen and nitrogen	(4) glucose and ox	ygen
32.	Bryophytes do not possess	ż	
	(1) chlorophyll a	(2) cuticle	
	(3) vascular tissue	(4) embryo	
33.	Cooksonia was a		
	(1) liverwort (2) trimesophyte	(3) equisetophyte	(4) rhyniophyte
34,	A plant group not included under the	eridophytes	
	(1) ferns (2) whiskferns	(3) lycopods	(4) hornworts
35.	'Sulphur showers' on hills are	,	
	(1) pollen grains of Cycas	(2) pollen grains of	Pinus
	(3) pollen grains of Cedrus	(4) pollen grains of	Taxus
36.	Motile sperms are characteristic feature	of ,	
•	(1) Pinus (2) Cycas	(3) Gnetum	(4) Taxus
37.	Respiratory quotient for germinating ca	ohydrate rich seed	is
	(1) one	2) less than one	
	(3) more than one	4) variable	
	2		

38.	In photosynthesis primary photochemis	stry a	and charge separation takes place at
	(1) electron transport chain	(2)	photosystem I
	(3) photosystem II	(4)	photosystem I and II both
39.	The production of ATP from ADP, with	out i	involving oxidation of NADH, is called
•	(1) oxidative phosphorylation	(2)	electron transport reaction
	(3) substrate level phosphorylation	(4)	β-oxidation
			**
4 0.	The pink colour of root nodules is due	to	
	(1) haemoglobin	(2)	carotenoids
	(3) leghaemoglobin	(4)	astaxanthin
	*		
41.	Lysosomes are rich in enzymes		
	(1) acid posphatases	(2)	alkaline phosphatases
	(3) dehydrogenases	(4)	permeases
42.	Pseudomurein is the constituent of cell	l wal	11 of
	(1) bacteria (2) cyanobacteria	(3)	archaea (4) mycoplasma

43.	One step growth curve is associated wi		
	(1) bacteria (2) virus	(3)	plant cells (4) animal cells
64)	7		(P.T.O.)

44.	Highest level of nitrogen fixed by	**
0.000 	(1) free living cyanobacterium	(2) Rhizobium sp.
	(3) Azotobacter	(4) Clostridium
45.	Cell to cell communication in plant cell	occurs through
	(1) pit connections	(2) mesosomes
1 TAN	(3) desmosomes	(4) plasmodesmeta
	F	
46.	What happens when a neuron's member	rane depolarizes?
	(1) There is a net diffusion of Na ⁺ out	of the cell
	(2) The neuron's membrane voltage be	comes more positive
	(3) The neuron becomes less likely to	generate an action potential
*	(4) The inside of the cell becomes mor	e negative relative to the outside
	30 *	×
47.	Where are neurotransmitter receptors 1	ocated?
	(1) At nodes of Ranvier	
	(2) On the postsynaptic membrane	
	(3) On the membranes of synaptic ves	icles
	(4) In the myelin sheath	

48.	The cortical reaction of sea urchin eggs functions directly in
æ	(1) the formation of a fertilization envelope
	(2) the production of a fast block to polyspermy
٠	(3) the release of hydrolytic enzymes from the sperm
	(4) the fusion of egg and sperm nuclei
49 .	In a frog embryo, the blastocoel is
	(1) completely obliterated by yolk
	(2) lined with endoderm during gastrulation
	(3) located in the animal hemisphere
rii	(4) the cavity that becomes the coelom
50.	The first cells to migrate through the blastopore in chick embryo are destined to become
	(1) endoderm (2) mesoderm (3) foregut (4) head process
51.	An epitope associates with which part of an antibody?
	(1) The antibody-binding site
	(2) The heavy-chain constant regions only
	(3) Variable regions of a heavy chain and light chain combined
	(4) The light-chain constant regions only
164)	g (P.T.O.)

- 52. Which statement best describes the difference in responses of effector B cells (plasma cells) and cytotoxic T cells?
 - (i) B cells confer active immunity; cytotoxic T cells confer passive immunity
 - (2) B cells kill viruses directly; cytotoxic T cells kill virus-infected cells
 - (3) B cells secrete antibodies against a virus; cytotoxic T cells kill virus-infected cells
 - (4) B cells accomplish the cell-mediated response; cytotoxic T cells accomplish the humoral response
- 53. HIV targets include all of the following, except
 - (1) macrophages

(2) cytotoxic T cells

(3) helper T cells

- (4) cells bearing CD4
- 54. A distinctive feature of the mechanism of action of thyroid hormones and steroic hormones is that
 - (1) these hormones are regulated by feedback loops
 - (2) target cells react more rapidly to these hormones than to local regulators
 - (3) these hormones bind with specific receptor proteins on the plasma membrane of target cells
 - (4) these hormones bind to receptors inside cells
- 55. Vertebrates and tunicates share
 - (1) jaws adapted for feeding
 - (2) a high degree of cephalization
 - (3) the formation of structures from the neural crest
 - (4) a notochord and a dorsal hollow nerve cord

(164)

56.	Ma	ammals and living birds share all of the	e following characteristics, except
	(1)	endothermy	
	(2)	descent from a common amniotic ance	cestor
	(3)	a dorsal, hollow nerve cord	•
	(4)	an archosaur common ancestor	
57.	As	hominins diverged from other primates	es, which of the following appeared first?
	, (1)	Reduced jawbones (2	(2) Bipedal locomotion
	(3)	The making of stone tools (4	(4) An enlarged brain
58.	Syc	con belongs to a group of animals, which	ich are best described as
	(1)	multicellular having tissue organisation	on but nobody cavity
	(2)	unicellular or acellular	•
	(3)	multicellular with cell-tissue grade of	organisation
	(4)	multicellular with a gastrovascular sys	ystem
59.	Pae	edogenesis refers to	
	(1)	precocious development of gonads	
	(2)	retention of larval characters by adult	lts (
	(3)	retention of rudimentary characters in	n adults
	(4)	retrogressive metamorphosis	e e
- 41		11	

60.	Which of the following morphological changes in not involved in human evolution?										
	(1) Attainment of erect posture and bipedal locomotion										
	(2) Increase in brain size and intelligence										
	(3) Increase in body hair										
	(4) Narrowing and elevation of nose										
61.	In the cell cycle, mitosis occurs between										
	(1) S and G2 phase (2) S and G1 phase										
	(3) G1 and G2 phase (4) G2 and S phase										
62.	Where does the duplication of chromosomes occur?										
	(1) Interphase (2) Prophase (3) Metaphase (4) Anaphase										
63.	The major structural protein of the extracellular matrix is										
	(1) fibronectin (2) collagen (3) elastin (4) laminin										
64.	Ribosomal subunits are assembled in										
	(1) cytoplasm (2) endoplasmic reticulum										
	(3) Golgi complex (4) nucleus										
65.	If the eyepiece lens magnifies 10 times, what objective lens will give x400 magnification?										
	(1) x0·4 (2) x4 (3) x40 (4) x400										

66.	Crossing-over occu	rs in		*
12	(1) pachytene	(2) zygotene	(3) leptotene	(4) diplotene
67.	Beside nucleus, Di	NA is also present in	i.	
	(1) ribosomes	(2) lysosomes	(3) mitochondria	(4) Golgi complex
68.	The 70S ribosomes	are composed of	d.	*
	(1) 35S and 35S	(2) 50S and 20S	(3) 50S and 30S	(4) 60S and 20S
69.	Bacterial genome is	prevented by its or	wn endonucleases by	ē ,
	(1) methylation at	restriction sites -	ä	υ
	(2) immune mecha	nism	* _**	
	(3) nuclease resista	ant genome		
	(4) the ability to d	estroy all endonucle	ases	
		*	S	
70.	Holiday junction is	observed during		
	(1) mitosis	(2) interphase	(3) recombination	(4) DNA repair
71.	If the code for an ar	nino acid is AGC on	the DNA molecule, th	e anticodon on the tRNA
	(1) AGC .	(2) TGC	(3) UCG	(4) UAG
72.	How many DNA mostage of cell cycle?	decules are present	in the nucleus of hu	man somatic cell in G2
	(1) 23	(2) 46	(3) 69	(4) 92
164)		13	**	(P.T.O.)
15	8.			

7 3. [°]	Schwann and Schleiden stated	8	
	(1) plants are not made of cells		27
8	(2) cells are basic unit of life	*	
	(3) animals have cells		
	(4) all cells come from pre-existing (cells	
74.	The structure in the membrane need	ded for potassium efflux and sodium is	ıllux
	(1) Nucleopore (2) Capillaries	(3) Ion channels (4) Vacuoles	
75.	What is the alternative name of cell	death?	
	(1) Necrosis	(2) Lysis	
	(3) Oxidative burst	(4) Apoptosis	
76.	The centriole is comprised of how m	nany groups of microtubules?	
	(1) 9 (2) 12	(3) 6 (4) 18	
77.	What is the correct order of differen	nt stages of mitosis?	
	(1) Prophase—Metaphase—Telophas	e—Anaphase—Cytokinesis	
	(2) Prophase—Cytokinesis—Metapha	asc—Telophasc—Anaphase	
	(3) Anaphase—Prophase—Metaphase	e—Telophase—Cytokinesis	
	(4) Prophase—Metaphase—Anaphas	e—Telophase—Cytokinesis	
		a ja	

78,	Which of the following forms of life is not eukaryotic?
	(1) A protist such as an amoeba
	(2) A plant cell such as elodea
	(3) A bacterial cell such as streptococcus
	(4) A human cell such as a red blood cell
79.	An electron microscope is needed for seeing
70	(1) the cell membrane (2) chloroplasts
	(3) nerve cells (4) the nucleus
80.	A cell that had relatively few energy needs would probably have a relatively small number of
	(1) chromosomes (2) lysosomes (3) ribosomes (4) mitochondria
81.	Which of the following processes requires both carrier molecules and energy?
	(1) Osmosis (2) Facilitated transport
	(3) Active transport (4) All of the above
82.	Digestive enzymes or hydrolytic enzymes are terms that would be associated with
	(1) Golgi apparatus
	(2) smooth endoplasmic reticulum
	(3) ribosomes
	(4) lysosomes
(164)	15 , (P.T.O.)
11	, (F.1.

	(1) Production of two identical daughter cells									
	(2) Production of two nuclei with identical genetic content									
	(3) Precise division of the cytoplasm and its distribution to two daughter cells									
	(4) Reproduction of mitochondria and chloroplasts	85								
84.	Meiosis involves ——— division(s) of a nucleus.									
	(1) one (2) two (3) four (4) eight									
85.	Which of the following statements best describes the 'fluid mosaic model' of the structure of the cell membrane?	IE.								
	(1) Two layers of protein with lipid layers between the protein layers	33								
	(2) Two layers of lipid with proteins between the lipid layers									
	(3) A double layer of lipid molecules with protein molecules suspended in the layer									
	(4) A single layer of protein on the outside and a single layer of lipids on the inside									
86.	A nonsense mutation is the one that									
	(1) replace one amino acid with another in the gene product									
	(2) replace an amino acid codon with a stop codon									
	(3) can be produced by deletions, insertions or splicing errors									
35	(4) create or destroy signals for exon-intron splicing									
164)	16	Ł								

83. Which of the following does mitosis normally accomplish?

87.	The chromosomal	constitution of an	Edward syndrome pa	itient is	
1.5	(1) 46,XY,+13	(2) 46,XY,+16	(3) 46,XY,+18	(4) 46,XY,+21	
88.	Crossing-over bet	ween homologous ch	aromosomes during	nciosis occurs at	
	(1) zygotene	(2) pachytene	(3) diplotene	(4) metaphase I	
89.	Mendel's 3:1 mor based on the ass		:1 dihybrid ratios a	re hypothetical prediction	ns .
	(1) each allele is	dominant or recess	ive		
	(2) segregation is	unimpeded	8.		
ï	(3) fertilization is	random			
	(4) All of the abo	ove			
90.	The term aneuplo	idy refers to			
	(1) all or part of	one or more chrom	osomes is added	•	
	(2) only part of o	one or more chromo	somes is added		
	(3) all or part of	one or more chrom	osomes is added or	deleted	
	(4) only one or r	nore full length chro	mosomes is added	201	
91.	The nomenclature	of human autosom	ies depend on		
-	(1) length of the	chromosomes			
	(2) size of the ch	romosomes		ā	
	(3) centromere p	osition of the chrom	osomes		
\$. \$	(4) All of the abo	ove	¥		
(164)			17	(P.T.	.O.) ·
				uři .	

92.	The	1946	Nobel	Prize	in	Physiology	or	Medicine	Was	given	to
-----	-----	------	-------	-------	----	------------	----	----------	-----	-------	----

- (1) T. H. Morgan for discovery of production of mutations by means of X-ray irradiation
- (2) T. H. Morgan for discovery of production of mutations by means of UV irradiation
- (3) H. J. Müller for discovery of production of mutations by means of X-ray irradiation
- (4) C. Stern for discovery of production of mutations by means of X-ray irradiation

93. CpG island is usually found in the

- (1) promoter region of eukaryotic genes
- (2) exons of eukaryotic genes
- (3) promoter region of prokaryotic genes
- (4) plasmids

94. Alu repeats

- (1) are restricted to the centromeric region of human chromosomes
- (2) are interspersed throughout the genome equally in heterochromatic and euchromatic regions of human genome
- (3) have a relatively high GC content and mainly dispersed in the euchromatic region of human genome
- (4) have a relatively high AT content and mainly dispersed in the heterochromatic region of human genome
- 95. In a family with three children, what is the probability that two are boys and one is girl?
 - (1) 2/3
- (2) 1/2
- (3) 3/8
- (4) 1/3

(164)

96.	What percent the total human genome is transcribed?
	(1) less than 30 (2) 40-50 (3) 60-70 (4) 80-90
97.	Mutations are
	(1) caused by genetic recombination
	(2) heritable changes in genetic information
	(3) caused by faulty transcription of the genetic code
	(4) always beneficial to the development of the individuals in which they occur
98.	A man of which blood group could not be the father of a child with blood group AB?
	(1) A (2) B (3) O (4) AB
99.	Mitochondrial DNA in eukaryotes is most probably derived from
	(1) chloroplast (2) virus (3) bacteria (4) fungi
00.	In a plant, red fruit (R) is dominant over yellow fruit (r) and tallness (T) is dominant over shortness (t). If a plant with RRTt genotype is crossed with a plant that has rrtt
	(1) 25% will be tall, all with red fruit
	(2) 50% will be tall, all with red fruit
	(3) 75% will be tall, all with red fruit
	(4) All offspring will be tall with red fruit
01.	Lack of independent assortment of two genes A and B in fruit fly Drosophila is due to
	(1) repulsion (2) recombination (3) linkage (4) crossing-over
.64)	19 (P.T.O.)

102.	The recessive genes located on X-chromosomes of humans are always								
	(1) lethal	(2) sub-lethal							
	(3) expressed in males	(4) expressed in females							
103.	Which of the following is not a heredita	ry discase?							
	(1) Cystic fibrosis (2) Thalassaemia	(3) Haemophilia (4) Cretinism							
104,	Genes for cytoplasmic male sterility in	plants are generally located in							
	(1) mitochondrial genome	(2) chloroplast genome							
	(3) nuclear genome	(4) cytosol							
105.	Haemophilia is more commonly seen in h	uman males than in human females beca							
	(1) a greater proportion of girls die in	nfancy							
	(2) this disease is due to an Y-linked r	ecessive mutation							
	(3) this disease is due to an X-linked recessive mutation								
	(4) this disease is due to an X-linked	lominant mutation							
106.	Gyaecomastia is a symptom of								
	(1) Turner's syndrome	(2) Klinefelter's syndrome							
	(3) Down syndrome	(4) SARS							
107.	DNA fingerprinting technique was first	leveloped by							
	(1) Schleiden and Schwaan	(2) Edward and Steptoe							
	(3) Jeffreys, Wilson and Thien	(4) Boysen and Jensen							
(164)	20								

108.	A protein having molecular weight of 440 Dalton, will have how many amino acids?
	(1) 4 (2) 44 (3) 10 (4) 40
109.	Peptide bonds, which covalently link two amino acids, result from
	(1) the oxidation of amino acids
	(2) the condensation of amino acids
	(3) the hydrolysis of amino acids
	(4) hydrogen bonds between amino acids
10.	The isoelectric point, or pl, of an amino acid or a protein is
	(1) the pH at which the amino acid or protein has no net charge
	(2) zero at pH 7·0
¥	(3) the pH at which the amino acid or protein is neither hydrophobic nor hydrophilic
	(4) the measure of the hydropathy of an amino acid or protein
11.	What happens to the activation energy in an enzyme catalyzed reaction?
	(1) Increases (2) Decreases (3) Unchanged (4) None of the above
12.	The Mihaelis constant km is a measure of
	(1) stability of the ES complex (2) affinity
	(3) Both (4) None of these
64)	21 (P.T.O.)
	[F.1.U.]

113.	Glycosidic linkages are present in		
	(1) nucleic acids (2) proteins	(3) lipids	(4) carbohydrates
114;	Under the anaerobic condition pyruvate products?	e is converted into whi	ch one of the following
	(1) Acetyl CoA	(2) Lactate	
	(3) Phosphoglycerate	(4) Citric acid	4
115.	Enzyme succinate dehydrogenase is co	mpetitively inhibited b	y .
	(1) succinate (2) fumarate	(3) malonate	(4) isocitrate
116.	A Ceramide having either a phosphoci	noline or phosphoethau	nolamine is known as
	(1) phosphatidylcholine	(2) phosphatidyleth	anolamine
	(3) sphingosine	(4) sphingomyeline	*
117.	Number of base pairs per helical turn	in 'Z' form of DNA is	
	(1) 10-5 (2) 11 ,	(3) 12	(4) 13
118.	Which of the RNA polymerase synthes	sizes tRNA in eukaryot	ic cell?
	(1) RNA polymerase III	(2) RNA polymeras	e II
	(3) DNA polymerase	(4) RNA polymeras	e I
119.	Protein involved in keeping the DNA	single stranded during	replication is
	(1) DNA binding protein	(2) helicase II	
Œ	(3) topoisomerase	(4) SSB protein	4
(164)	· · · · · · · · · · · · · · · · · · ·	22	

			10							
120.	Nucleolus plays an important role in production of									
	(1) rRNA		(2)	tRNA	(3	ij	mRNA	(4)	All of these	
121.	Vorebert er	nd Chase		hair evnerim	ento 1	ah	eled DNA wit	h		
141.	70.	ци Спавс		= 2					35	
	(1) ³ H	32	(2)	³² P	(3	5)	¹⁵ N	. (4)	³⁵ S	
122.	Deamination	on of ade	nine	leads to the	form	ati	on of			
	(1) xanthi	ne	(2)	hypoxantine	(3	3)	uracil	(4)	cytocine	
		<u>-</u>			,				275	
123.	The comm	on form	of DN	A present in	the !	liv	ing organism	18		
	(1) A form	Ĺ	(2)	B form	. (3	i)	C form	(4)	Z form	
124.	Methylation	n of DNA	at p	romoter cau	ses				æ	
	(1) activat		-			Α.	increase of g	Ana av	aression	
	(1) activate	ion or tra	uibci:	фион	(-	7	increase or g	one ca	resaion	
	(3) preven	tion of tr	ansci	ription	{4)	increase in t	ranslat	ion	
125.	The factor	Transcrip	otion	Biding Prote	in (Ti	BP	is required	for init	iation by	
	(1) RNA p	olvmeras	• 1		12	n	RNA polymer	ase II		
	(1) tam P	or, mercan	•		,-	,	····· posymon		× ~	
ű.	(3) RNA p	olymerase	: III		(4)	All of them			
126.	miRNA bas	ed silenc	ing o	f genes is a	type	of				
				_i1	10			_+i	-!\	
	(1) transcr	ubnousi (gene	Buencing	(2	ŀ	post-transcrij	puonal	anencing	
	(3) transla	itional sile	encin	g	(4)	post-translati	ional ge	ene silencing	ζ
	\$2	1		-						ii.
164					23					PTO

	127.	7. The primer of the lagging strand during DNA replication is removed by					
		(1)	DNA primase		ž		
		(2) 3' to 5' exonuclease activity of pol III (3) 5' to 3' exonuclease activity of DNA pol I					
		(4)	4) 3' to 5' exonuclease activity of pol I				
	128.	. Which of the following is not directly associated with regulation of eukaryotic g expression?					
		(1)	Acetylation of histones	(2)	Methylation of DNA		
		(3)	Alternative splicing	(4)	Activation of caspases		
	129.	Wh	ich one of the following is not direct	ly re	elated to gene regulation?		
		(1)	Glycosylation in ER	(2)	Acetylation of histones		
•		(3)	Activators	(4)	Silencer		
	130.	Which one of biotechnological products produced by recombinant technology is us for AIDS therapy?					
		(1)	Interferon a2b	(2)	Interferon-y		
		(3)	Interferon-β	(4)	Interferon a2a		
	131.	. Which one is not true for modern Biotechnology?					
		(1) Recombinant DNA technology is used to confer on cells entirely new synthe capabilities					
	193	(2) It is used to produce recombinant bovine somatotropin used for boosting milk					
		(3) Used to develop herbicide resistant plant					
		(4) Unable to splice together in vitro DNA molecules derived from different sour					
	(164)		24		al desired		

132.	Which one is correct for the plant cell culture?					
	(1) Enables production of hundreds of plants in a single experiment					
	(2) Could not produce virus free crops					
	(3) Could not be used to increase the yield of plants					
	(4) Could not be used for hybrid plant production					
l33.	Which one is not true for the biotechnological use of animal cell line?					
	(1) Namalwa cells line used for interferons production					
	(2) Namalwa cell line is used for the anti-viral and anti-cancer proteins					
	(3) Namalwa cell line is used for monoclonal antibody production					
	(4) Myeloma cells and spleen lymphocytes are used for monoclonal antibody production					
34.	First antibiotic produced by using biotechnological technique is					
	(1) Streptomycin (2) Neomycin (3) Penicillin (4) Amoxicillin					
.35.	Fermentation is a					
	(1) an aerobic process					
	an anaerobic process					
	(3) first it is an aerobic but later it is an anaerobic					
7	(4) first it is an anaerobic but later it is an aerobic					
36.	Which one is the first chemical to produced by the aid of Biotechnology?					
	(1) Methanol (2) Acetone (3) Butanol (4) Ethanol					
64)	25 (P.T.O.)					

	∞ ●∞	, f				
13 8 .	Plasmid used for genetic engineering must ca	rry following features				
	(1) Selectable maker, single restriction endom of species	uclease cut site, single copy with origin				
	(2) Multiple endonuclease cut site, multiple copies and origin of replication					
	(3) Selectable marker, multiple endonuclease replication	cut site, multiple copies and origin c				
	(4) Selectable marker, multiple endonucleas replication	e cut site, single copy and origin .				
139.	Which of the following is not true for the pG	EM3Z vector?				
	(1) LacZ is absent in this vector					
	(2) It contains two promoter T7 and SP6	T. E.				
	(3) It contains ampR gene as selection mark	er .				
	(4) It contains two binding sites for RNA pol	ymerase				
140.	Restriction endonuclease was discovered by					
	(1) Arber, Smith and Nathans (2)	Arber, Klenow and Nathans				
	(3) Klenow, Smith and Nathans (4)	Arber, Smith and Klenow				
141.	Recognition sequence to cut DNA by Alu I is	· .				
	(1) GATC (2) AGCT (3)	GAATTC (4) GGATCC				
(164)) 26	a a				

137. PCR which is an important technique for recombinant DNA technology was invented by

(4) T. D. Brock

(1) K. Blackman (2) T. A. Brown (3) K. Mullis

142.	Which one of the following is most usable and acceptable type of restriction endonuclease used in genetic engineering simply called as restriction endonuclease?					
	(1) Type I restriction endonuclease					
m	(2) Type II restriction endonuclease					
	(3) Type III restriction endonuclease					
•	(4) Type I and II restriction endonuclease					
L 43 .	Taq I restriction endonuclease produced from Thermus aquaticus cut DNA to produce					
	(1) sticky end recognizing hexanucleotide sequence					
	(2) blunt end recognizing hexanucleotide sequence					
	(3) sticky end recognizing fournucleotide sequence					
	(4) blunt end recognizing fournucleotide sequence					
.44.	Hind III is produced by bacterium					
	(1) Haemophilus influenza Rd (2) Haemophilus influenza Rf					
	(3) Haemophilus aegyptius (4) Proteus vulgaris					
145.	GATC sticky ends are produced by following enzyme pairs					
	(1) Bam HI and Bgl II (2) Bam HI and Eco RI					
	(3) Eco RI and Bgl II (4) Taq I and Bam HI					
146.	Flush end is also known as					
	(1) cohesive end (2) blunt end (3) sticky end (4) overhangs end					
164}	27 (P.T.O.)					

147.	One	ne important feature of sticky end enzymes is that			
	(1)	two different endonuclease with different recognition sequence can produce sams sticky ends			
	(2)	two different endonuclease with different recognition sequence cannot product same sticky ends			
	(3)	two different			
72	(4)	None of these			

148. Most restriction endonuclease function adequately at pH

- (1) 6.0
- (2) 6.4
- (3) 7.0
- .(4) 7.4

149. Dithiothreitol (DTT) is added into the restriction endonuclease digestion buffer to

- (1) act as reducing agent to destabilize enzyme
- (2) act as reducing agent to stabilize DNA
- (3) act as reducing agent to stabilize enzyme
- (4) act as reducing agent to inactivate enzyme

150. Which of the following is true?

- (1) Different endonuclease requires similar ionic strength for its function provided b NaCl
- (2) Different endonuclease requires different ionic strength for its function provided b MgCl₂
- (3) Different endonuclease requires similar ionic strength for its function provided b NaCl and MgCl₂
- (4) Different endonuclease requires different ionic strength for its function provided b NaCl and MgCl₂

* * *

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र के दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्त पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ट पर पैन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपिरलेखन की अनुमति नहीं है।
- उपयुंक्त प्रविष्टियों में कोई भी पश्चिर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्र माना जायेगा।
- 8. प्रश्त-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर मंत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-एत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से ग. करना है।
- 9. प्रत्यंक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा वृत्त को अपूर्ण भरने पर वह उत्तर गलत भाना जायेगाः।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चार हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, के होगा/होगी।