Mu

15P/205/2

Question Booklet No

		(To b	e filled up	by the	cand	idate by	blue/bl	lack ball-point pen)
Roll No.								
Roll No. (Write the	digits in	words)			*****			
Serial No.	of OMR	Answer	Sheet			*****		
Day and i	Date	**********			. 			(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ट पर दिये गए हैं|

[No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2 Hours/घण्टे

Full Marks/पूर्णीक : 450

(1) Attempt as many questions as you can. Each question carries 3 marks. Note: One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

> अधिकाधिक प्रश्नों की हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक सून्य होगा ।

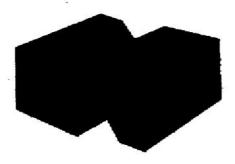
(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाचिक वैकल्पिक उत्तर सही उत्तर के मिकट प्रतीत हों, तो निकटतम सही उत्तर ं दें।

- 1. The incorrectly matched pair among the following
 - (1) nesosilicates—forsterite
- (2) cyclosilicates—talc.
- (3) phyllosilicates—muscovite
- (4) tectosilicates, orthoclase
- 2. Which of the following is not a mineral?
 - (1) Olivine (2) Talc
- (3) Calcite

1

(4) Quartzite


(P.T.O.)

3.	Which is not a polymorph of Alas	ы́О₅?	
	(1) Kyanite (2) Calcite	(3) Sillimanite (4) Andalu	ısite
4.	Which mineral shows double hard	iness?	
	(1) Magnesite (2) Quartz	(3) Feldspar (4) Kyanite	•
5,	Hardness of fluorite is		
	(1) 3 (2) 4	(3) 7 (4) 5	1557
6.	Asserts creetallized in which and	J	
	(1) Isometric system (3) Triclinic	(2) Monoclinic	
	(3) Triclinic	(4) Orthorhombic	
7.	The maximum number of axes of		l system
	(1) 13 (2) 10		•
8.	Match the crystal system with cor	reet number of classes	
	Group-I (Crystal System)		ž
	P. Isometric	1 22 122	
	Q. Orthorhombic		
	R. Hexagonal		
	3. Tetragonal	4. 5	
	(1) P-1, Q-2, R-3, S-4	(2) P-4, Q-1, R-3, 8-2	
	(3) P-3, Q-4, R-2, S-1	(4) P-4, Q-1, R-2, S-3	
(346)		2	<i>;</i> " :

9.	Tot	al number of o	classes in crysta	i syste	m is		
	(1)	22	(2) 6	. (3)	32	(4)	13
10.		26 - 25	nary plane whice equal parts wher				ntre of crystal and age of the other.
	(1)	Axial plane		(2)	Reference plan)C	e 5
	(3)	Plane of symm	etry	(4)	Twin plane		E .
11.	Wh	ich one is not	a physical prop	erty of	a mineral?		
	(1) ·	Hardness	(2) Streak	(3)	Form	(4)	Extinction
12.	Wh	ich crystal is t	he non-pleochro	ic syst	em?		20 10
	(1)	Hexagonal	(2) Triclinic	(3)	Cubic	(4)	Tetragonal
13.	Bia	xial minerals a	re not belong to	· 	- crystal systen	n.	<i>y</i>
	(1)	triclinic	***	(2)	tetragonal		
"tipes	(3)	monoclinic	5	(4)	orthorhombic	27	g *
14.	Wh	ich mineral she	ows the double	refracti	on?		10 10
	(1)	Calcite	(2) Quartz	(3)	Feldspar	(4)	Galena
15.	Str	eak of hematite	: is				æ
	(1)	black colour	H.	(2)	yellow	2	a • •
	(3)	cheffy red		(4)	None of these		200 F n F
(345)				3			(P.T.O.)

16.	Point of maximu	m curvature in fel	d is defined as	27
	(1) hinge point		(2) inflection p	point
	(3) plunge	4	(4) centre of c	curvature
17.	Transcurrent fau	lt is a type of	t e sk	
	(1) normal fault	÷ £	(2) reverse fat	alt
	(3) stike-slip fau	lt .	(4) oblique fau	ılt
18.	A plane is dipping	3 45° (True dip) tow	ards NE, the appe	rent dip of plane can be
	(1) > 90°	(2) only 0.	(3) 45° to 0°	(4) 90° to 45°
19.	True dip of a pla	ne is 30°, what w	ill be head of the	e plane?
	(1) 45°	(2) 60°	(3) 90°	(4) O°
20.	The direction of li-	ne along which an	inclined bed or pl	ane intersects a horizontal
	(1) fault trace	27.00	(2) dip direction	on.
	(3) strike		(4) plunge	
	•	15 No. 10		w g
21.	Point of maximum	m elevation in fold	is termed as	
	(1) hinge point	(2) tip point	(3) crest	(4) tough
(345)		. 4	§	

22. The net slip in following fault is

- (1) ab
- (2) ac
- (3) bc
- (4) ad

23. Unconformity is define as

- (1) plane representing the time of non-deposition and erosion
- (2) plane of asymmetric deposition
- (3) plane of joint and fault on regional scale
- (4) plane of faulting

24. Which one is not a deformational structure?

- (1) Fold
- (2) Fault
- (3) Joint
- (4) Disconformity

25. Match the following :

Group-I (Terms)

- P. Cross-section
- O. Profile section
- R. Similar fold
- S. Parallel fold
- (1) P-1, Q-2, R-4, S-3
- (3) P-4, Q-2, R-3, S-1

Group-II (Definition)

- Dip isogones that are perpendicular to bedding throughout the fold
- 2. A vertical plane through a fold
- 3. Dip isogones that are parallel to each other
- 4. The surface perpendicular to the hinge line
 - (2) P-4, Q-2, R-1, S-3
 - (4) P-1, Q-2, R-3, S-4

5

(P.T.O.)

26.	Intermediate princ	ciple stress (σ2) is	vertical in	at a
	(1) normal fault		(2) strike-slip faul	t
	(3) reverse fault		(4) thrust fault	
27.	Which of following	g is a correct state	ement?	4
	(1) The angle between interlimb angle		measured in the cro	ss-section is called the
		horizontal axial sur d is called a reclin		nust have a horizontal
	(3) The high poin culmination	at of the hinge line	e in a doubly-plun	ging fold is called the
	(4) In an anticlin	e, the beds are yo	unger towards the	core
28.	—— is an area	of older rocks sur	rounded by younge	r rocks.
	(1) Inlier	(2) Outlier	(3) Dome	(4) Basin
29.	having net	slip equal to dip-	slip and rake of ne	slip 90°.
	(1) Dip fault	* •	(2) Dip-slip fault	
	(3) Strike fault		(4) Bedding fault	
30.	is defined a		ock between the side	es of which there is no
	(1) Fold	(2) Fault	(3) Joint	(4) Shear zone
31.	A topographic cor	ntour is defined as		
	(1) line joining th	e point of equal s	tratigraphic horizon	8
	(2) line joining th	e point of equal el	levation	**
	(3) line joining th	e point of equal th	nickness	
	(4) line joining po	oint of same age re	ocks	
(345)	*	6		# 15 m 15

32.	The surface waves are	s X	9
	(1) P-waves	(2) S-waves	
	(3) both P and S waves	(4) L-waves	
33.	Conrad discontinuity separa	tes boundary between	
	(1) lower crust and upper n	nantle	
	(2) upper mantle and lower	mantle	62
	(3) outer core and inner cor	e , ,	
	(4) upper crust and lower c	rust	
			•
34.	The new oceanic surface are	created at — plate margin.	
	(1) constructive (2) distractive	ctive (3) conservative (4) convergent	:
	1.		
35.	Match the name of scientist	(Group I) and their famous theories (Gro	up II)
	Group—I	Group—II	
	P. Alfred Wegener	1. Isostasy	
	Q. Airy	2. Sea floor spreading	
	R. Herry Hess	3. Theory of continental drift	
	S. Pratt	4. Big Bang theory	
	(1) P-1, Q-2, R-3, S-4	(2) P-3, Q-1, R-2, S-4	
	(3) P-4, Q-1, R-2, S-3	(4) P-1, Q-2, R-4, S-3	*1
345)		7	(P.T.O.)
		¥	

36.	Which of the following is supercontinent?						
	(1) Gondwanaland	i	(2)	Laurasia			
8.)	(3) Pangea		(4)	Panthalassa	ĕ		
37.	Mechanical erosio	n cannot takes pla	ce i	n following ma	nne	,	
	(1) Abrasion		(2)	Attrition			
	(3) Cavitation	at the state of th	(4)	Dissolving act	ion	-	
38.	An isolated table-	land area with stee	рв	ides called as		8,,,	
	(1) knick point	(2) escarpment	(3)	mesa	(4)	peneplains	
39.	Which one is not	a river pattern?					
	(1) Antecedent	(2) Consequent	(3)	Insequent	(4)	Trellis	
40.	Which of the follo	wing term is not r	clat	ed to wind eros	sioni	,	
	(1) Deflection	(2) Traction	(3)	Abrasion	(4)	Attrition	
41.	Blow-outs formed	due to					
	(1) wind	(2) river	(3)	glacier	(4)	impact .	
42.	Fiords are formed	by action of					
	(1) wind	(2) river	(3)	glacier	(4)	lake	

43.	Which of the following is not erosi	onal ;	process of continental glaciers?
	(1) Plucking		Avalanching
	(3) Rasping	· (4)	None of the above
44.	Caverns are related to		
	(1) underground water	(2)	river
	(3) glacier	(4)	wind
45.	Blind valley is formed due to		
	(1) erosional (2) deposition	(3)	steep slope (4) surface runoff
46.	In the following, which combination	n is v	vrong?
	(1) Knick point, escarpment, Mesa	(2)	Plucking, avalanching, rasping
	(3) Hamada, Yardang, sand dunes	(4)	Pedestal, cirques, arete
47.	Fine grained igneous rocks are		
5	(1) intrusive body	(2)	plutonic
	(3) extrusive body	(4)	sedimentary body
48.	Hard, massive, compact with interbedding is the essential feature of	rlockis	ng grains and absence of Fossil and
	(1) igneous rocks	(2)	sedimentary rocks
23	(3) metamorphic	(4)	limestone
345)	_	9	(P.T.O.,

49.	Volcanic ed	quivaler	nt of g	ranite is						
	(1) basalt		(2) gs	abbro	(3	3)	rhyolite	(4)	diorite	
50.	Gabbro is	a ——	– type	of igneo	us roc	k.				54
	(1) volcani	С			(2	2)	plutonic		200	
	(3) hypaby	esal			. (4	+}	metasediment	ary	8	
51.	Which one	is not	conco	rdant bo	dy?				e.	
	(1) Laccoli	ths	(2) L	poliths	(3	3)	Phacoliths	(4)	Batholiths	
52.	Which min	eral cr	ystalliz	ed last f	rom th	ie.	magma?			
	(1) Olivine		(2) Q	uartz	(3	3)	Hornblende	(4)	Labradorite	;
53.	The 'aa str	ucture'	is als	o known	as					
	(1) pahoeh	oe			(2	2)	ropy lava			
	(3) blocky	lava			(4	+)	flow structure		•	
54.	The occurre	ence of	foreign	materia	ls with	in	igneous rocks	are :	formed a str	ucture
	(1) xenolith	nic stru	cture		(2)	myrmekite str	uctu	re	
	(3) sheet s	tructur	e		(4	}	amygdaloidal ı	struc	cture	
345)	*				10				E.	2.0

55.	When the igneous rocks made of or	nly glassy materials known as
	(1) holocrystalline	(2) hemi crystalline
	(3) holohyaline	(4) semihyaline
56.	Perlitic cracks in crystal represent	the conversion from
	(1) basic magma	(2) acidic magma
	(3) glassy condition	(4) plutonic condition
57.	Eutectic point is a	er 155
	(1) univariant (2) invariant	(3) di-varient (4) tri-varient
58.	Silica content in basic igneous rock	: is
	(1) 44 to 55%	(2) more than 65%
	(3) 55 to 65%	(4) more than 80%
59.	Gem quality olivine is termed as	
	(1) norite (2) satin-spar	(3) peridot (4) ruby
60.	Intergrowth of quartz and feldspar	resulting
	(1) perthite	(2) orbicular structure
	(3) graphic texture	(4) myrmekite structure
(345)	11	(P.T.O.)

61. Correctly match the following:

Column-A

Column—B

- P. Laths of plagioclase are totally surrounded in a coarse grained matrix of pyroxene crystals
- 1. Spherulitic texture
- Q. Smaller grains of one mineral are completely enclosed in large
- 2. Ophitic texture
- R. Plagioclase grains show a preferred orientation due to flowage
- 3. Poikilitic texture
- S. Spherical intergrowths of radiating quartz and feldspar replace glass as a result of devitrification
- 4. Trachytic texture

- (1) P-2, Q-3, R-4, S-1
- (2) P-1, Q-2, R-3, S-4
- (3) P-2, Q-4, R-3, S-1
- (4) P-1, Q-3, R-2, S-4
- 62. Principle of uniformitarianism is proposed by
 - (1) William Smith

(2) James Hutton

(3) Gottlob Worner

- (4) Harry Hess
- 63. Which one is most stable mineral?
 - (1) Quartz
- (2) Feldspar
- (3) Zircon
- (4) Olivine

- 64. The phi-scale is given by
 - (1) $\phi = -\log_2 d$

(2) $\phi = -\log_5 d$

 $(3) \ \phi = -\log_{10} d$

(4) $\phi = \log_2(-d)$

(346)

65.	What is the sand particle size?		
19	(1) 2 to 0.092 mm	(2)	4 to 2 mm
	(3) 2 to 0-0625 mm	(4)	2 to 0·0825 mm
66.	Grain size analysis of clastic rock ca	anno	ot interpret
	(1) environment	(2)	source rock
	(3) energy flow	(4)	nature of transportation
67.	The river sands are distinguished by	7	
	(1) positive skewness	(2)	negative skewness
	(3) high porosity	(4)	sand dunes
68.	The ratio of number of grain to grain counted in the traverse is	n cc	entacts to the total number of grains
•	(1) packing density	(2)	packing proximity
	(3) true porosity	(4)	true density
69.	The diamictic conglomerate are char	acte	rized by
	(1) high porosity	(2)	high matrix
	(3) low matrix	(4)	zero matrix
70.	Endogenetic rocks are deposited due		
	(1) precipitation	(2)	river deposition
	(3) volcanic ash	(4)	mechanical weathering
345)	13		(P.T.O.)
	920		

71.	Graywacke is a type of rock	E .	
	(1) volcanic rock	(2) non-clastic sedimentary	
	(3) rudaceous sedimentary rock	(4) arenaceous sedimentary rock	
72.	What is mineralogical maturity of	sandstone?	
	(1) Ratio of quartz to the olivine	(2) Ratio of feldspar to the quartz	
	(3) Ratio of quartz to feldspar	(4) Ratio of flaky minerals to feldspar	•
73.	At 20° temperature, what will critica flow?	al Reynolds number for laminar to turbule	nt
	(1) 500 (2) 1200	(3) 700 (4) 1000	
74.	Calcium carbonate could not found	d in	
	(1) above CCD (2) below CCD	(3) below ACD (4) above ACD	
75 .	Which of the following, original comp	ponents bound together at time deposition	7
	(1) Mudstone (2) Wackestone	(3) Packstone (4) Boundstone	
76.	Which of the following statement is	s false?	
	(1) Graded bedding shows the grai	in size variation within a bed	
	(2) Convolute bedding a deformed	bedding structure	
	(3) Secondary sedimentary struct sedimentary rock	tures form before the diagenesis of	а
	(4) Hummocky cross-stratification	is primary sedimentary structure	
345)	1	.4	

77.	The metal content	in an ore is calle	d as		
	(1) grade	(2) tenor	(3) rank	(4) gangue	
78.	—— deposits co	omprise an assem	blage of high	temperature metar	norphic
	(1) Hypothermal	,	(2) Mesothern	nal	
79	(3) Skarn	r	(4) Residual		
79 .	Among the following		s not belong	to the factor affect	ing the
÷	(1) Climate	40	(2) Local relie	ef	2
	(3) Existence of p	roper drainage	(4) Gravity		9
80.	is a hard n	nantle which is pro t of oxidation on t	oduced by usel he surface.	ess residual materi	als and
	(1) Gossan	(2) Overburden	(3) Gangue	(4) Placer	
81.	Goethite is a/an	T x	* H	*	
	(1) silicate	(2) sulphide	(3) carbonate	(4) oxide	C.
82.	Tenorite is an ore	mineral of			
	(1) iron	(2) manganese	(3) copper	(4) lcad	
3 45)	r P	15	5		(P.T.O.)

83.	Which of the following is the ore	e mineral of manganese?	
	(1) Smithsonite	(2) Haematite	
	(3) Bornite	(4) Braunite	×
84.	Manganite ore mineral has been	found in the rock of	
	(1) gondite	(2) charnockite	
	(3) orthoquarzite	(4) marl	
\$ 5.	Bauxite deposits occur as		8
	(1) disseminated	(2) loades	
	(3) blanket	(4) hydrothermal solu	tion
86.	Chromium deposits occur in		
	(1) granite	(2) limestone	
	(3) acidic rocks	(4) ultrabasic rocks	٠
8 7.	Kudramukh is famous for		
	(1) Banded Hematite Quartz (BH	HQ)	
	(2) Magnetite		
	(3) Chromite		
	(4) Psilomelane		
145)		16	

88.	Ruby is	s a gem va	riety o	of .	÷					
	(1) Oliv	ine	(2) L	abrado	rite	(3)	Quartz	(4)	Corundun	n.
89.	j	is an impe	rfectly	crystal	lized o	dian	onds with	inclusio	ons.	
	(1) Bor	t .	(2) B	allas		(3)	Carborano	io (4)	Moonstone	
9 0.	Second	ary produc	t of D	iaspor c	and (Gibt	site is	•		
	(1) Boh	emite			9	(2)	Bauxite			
	(3) Hyd	lrogillite		3		(4)	Amazon sı	tone		
91.	Match 1	the followin	g and	choose	the	corr	ect option	:	ř.	
	Col	umn—A			Colum	nn—	-B			
	P. Mu	scovite		1.	Resid	ual	concentrat	ion		
74.	Q. Bat	exite		2.	Magn	natio	segregation	on	9	
	R. Cor	рег				89 8	c deposits			
	(-	omite	121		\$160Å		rmal soluti	on		
	{1} P-4,	Q-2, R-1,	S-3			(2)	P-3, Q-1,	R-2, S-4		
ż	(3) P-3,	Q-1, R-4,	S-2			(4)	P-4, Q-2,	R-3, S-1		
92.	Which o	one among	the fo	llowing	is no	t a	metamorpl	hic rocki	•	
	(1) Horn	nfels				(2)	Orthoquar	tzite		
	(3) Met	agranite	ال			(4)	Biotite gne	iss		
(45)		9			17		25	ü		(P.T.O.

				95	20		
93.	Which one of the	follo	wing belongs	high	grade metamo	orphi	sm?
	(1) Epizone	(2)	Acme zone	(3)	Mesozone	(4)	Katazone
94.	structure is						
95.	secondorate de la constantina de la co			e N	*	•	
	(1) Metacharnoki	te		(2)	Metaqurtzite	9	
	(3) Biotite gneiss		S4	(4)	Khondalite	8.5	
96.	Which one from	the f	ollowing is no	n-foli	ated metamor	phic	rock?
	(1) Gneiss	(2)	Phyllite	(3)	Slate	(4)	Quartzite
97.	is the high	ı ten	nperature and	l high	pressure me	tamo	rphic facies.
	(1) Blueschist	(2)	Greenschist	(3)	Eclogite	(4)	Amphibolite
98.	The term 'blast o	or bl	astic' used as	prefi	x in the case	of	
	(1) palimpsest te	xtur	9	(2)	aphanitic tex	ture	
	(3) phanitic textu	ire	¥	(4)	glassy textur	e	
99.	In the Al ₂ SiO ₅ pe	olym	orphs, which	show	s highest grad	ie of	metamorphism?
	(1) Andalusite			(2)	Kyanite		
	(3) Sillimanite			(4)	All of the ab	ove	€
(345)			. 1	8			

100.	In the following indicates the asc	cending order of temperature of formation
	(1) Eclogite, Greenschist, Zeolite,	Blueschist
	(2) Greenschist, Blueschist, Eclo	gite, Granulite
	(3) Zeolite, Amphibolite, Granulit	e, Eclogite
	(4) Blueschist, Granulite, Amphi	bolite, Eclogite
101.	Omphacite and Pyrope Garnet ar	e the representative minerals for
	(1) Zeolite facies	(2) Greenschist facies
	(3) Glaucophane-schist facies	(4) Eclogite facies
102.	Which is not related to metamor	phism?
	(1) Wind	(2) Pressure
	(3) Temperature	(4) Chemically active fluid
103.	An uniform pressure is also calle	×d.
	(1) direct pressure	(2) hydrostatic pressure
	(3) compression	(4) tension
104.	— metamorphism occurs a low temperature.	around larger intrusives at comparatively
	(1) Pyrometamorphism	(2) Contact metamorphism
	(3) Metasomatism	(4) Auto-metamorphism
(345)		19 <i>(P.T.O.)</i>

(345) .

108.	Autou one of the tonowing	18 1111108	transtabine om	LF	
	(1) Eratham (2) Acm	e zone	(3) Series	(4) Forma	tion
106.	The Paleozoic era is restric	ted betw	reen		
	(1) 65 to 225 Ma		(2) 1.8 to 65	Ma	
	(3) 570 to 2500 Ma		(4) 225 to 57	0 Ma	
107.	Match the following Column	ins and	give the correct	answer :	
	Column—A	Col	umn—B	*	
	P. Blueschist facies	1. Chl	orite	9	
	Q. Greenschist	2. Pla	gioclase		
	R. Granulite	3. Mg	-Garnet		
	S. Eclogite	4. Gla	ucophane	er.	
	(1) P-4, Q-1, R-2, S-3		(2) P-1, Q-4,	R-3, S-2	
	(3) P-2, Q-3, R-1, S-4		(4) P-3, Q-2,	R-4, S-1	
108.	Correctly match Column A	and B	;		
	Column—A	Col	umn—B		
	P. Shale	1. Qu	artzite		•
	Q. Sandstone	2. Am	phibolite		
	R. Granite	3. Sla	te		
	S. Basalt	4. Gn	cias		
	(1) P-1, Q-2, R-4, S-3	·	(2) P-2, Q-1,	R-4, S-3	
	(3) P-3, Q-1, R-4, S-2		(4) P-4, Q-3,	R-2, S-1	

109.	Which era is called as 'Age of Re	deptiles'?	
	(1) Palaeozoic era	(2) Mesozoic era	
	(3) Cainozoic era	(4) Proterozoic era	
110.	Which formation belongs to the	Lower Gondwana Sequence?	8
	(1) Zawar (2) Poladpur	(3) Rohtas (4) Iron stone	
111.	Semri Group is related to the		250
	(1) Upper Vindhayan	(2) Lower Gondwana	
	(3) Lower Vindhyan	(4) Upper Gondwana	
112.	Which is not related to coalfield?	?	
	(1) Chandrapur (2) Sohagpur	(3) Ramgarh (4) Panna	
113.	Arranged in correct sequence fro	om older to younger :	
	(1) Sargurschist complex, Penins	sula gniessic complex, Dharwar super gro	up
	(2) Patcham, Umia, Katrol, Char	ri .	
	(3) Karharbari, Raniganj, Baraka	ar, Kulti	
	(4) Papaghani, Nallamalai, Cheya	air, Kistna	
114.	Which one of the following separat	te the Eastern Dharwar to Western Dharwa	r?
	(1) Peninsula gneissic complex	(2) Bababudan	,
	(3) Rani Bennur	(4) Closepet granite	
(345)		21 (P.T.	.O.)

		65					
115.	The maximum Ger	nera and Species	in U	pper Gondwane	a Se	quence	found is
	(1) Mahadev	(2) Jabalpur	(3)	Rajmahal	(4)	Maleri	
116.	Kaladgi Group bel	ongs to	128				
	(1) Archaean era	9	(2)	Proterozoic ere	Ł		
	(3) Palaeozoic era	1.0	(4)	Mesozoic era			
117.	The general trend	of Aravalli Group	is	8 .		2	
	(1) NW-SE	(2) E-W	(3)	ESE-WNW	(4)	NE-SW	
118.	Dhokpathan forme	ation is overlain b	y —	formation.		4	
	(1) Pinjor	(2) Tatrot	(3)	Nagri	(4)	Chinji	Ÿ
119.	Match the following	ng;				* P	
	Column-A	Colu	mn-	- B			
	P. Dhosa Oolite	1. Gon	dwai	na Sequence			
	Q. Mansar	2. Dha	war	Super Group			
	R. Umaria Marin	e Bed 3. Saus	sar (Group			
	S. Hutti Goldfield	i 4. Jura	ssic	of Kutch			
	(1) P-3, Q-1, R-4,	S-2	(2)	P-2, Q-4, R-1,	S -3	3	
	(3) P-1, Q-2, R-3,	S-4	(4)	P-4, Q-3, R-1,	S-2	Į.	
100	***************************************		_				
120.	Which is not an in	nvertebrate fossil i	n th	e following?			
18	(1) Productus	(2) Ptylophylum	(3)	Trigonia	(4)	Murex	
(345)		. 22		# *			

121.	Whi	ich one is an i	ndex foss	i1?			e#		\$	
	(1)	Trilobite	(2) Natile	oids	(3)	Gastro	pods	(4)	Bivalves	શ
122.		tch the followin	_		D1 522 51					
	Coh	umn—A (Phylui				2)			
	P.	Brachiopoda								
*	Q.	Cephalopoda	-	2.	Goniatite	li .				
3	R.	Gastropoda		3.	Sprifer					
	S.	Bivalvia		4.	Spondylu	ıs				
	(1)	P-1, Q-2, R-3,	S-4		(2)	P-1, Q	-3, R-2,	S-4		
	(3)	P-3, Q-1, R-4,	S-2		(4)	P-3, Q	-2, R-1,	S-4		
123.	Wha	at are the char	racteristic	s of	an index	fossil?	ı			
	(1)	Wide geograph	ical range	e an	nd limited	time r	ange			
	(2)	Both time and	geograpi	ica.	l ranges s	hould	be wide			
	(3)	Limited geogra	phical ra	nge	and wide	time r	ange			
	(4)	None of the al	pove							
124.	Trig	gonia has ——	– dentitio	n p	attern.					8
	(1)	lsodont	(2) Schiz	odo	ont (3)	Hetero	dont	(4)	Desmodon	it
125.	The	coiling of she	ll in	— is	s sinistral.	•	s			
	(1)	Trochus	(2) Mure	X.	(3)	Planor	obis	(4)	Physa	
(345)					23					(P.T.O.)
100 00 00 00 00 00 00 00 00 00 00 00 00			g		•				w:	

120.	WINCII IS NOT THE	aub-class of Ceptu	nobe	Juliar .		
	(1) Nautiloidea	(2) Ammonoidea	(3)	Acephala	(4) Dibrancl	nia
127.	The body of Trik Shield, Thorax as	obite is made up on nd ———.	fthi	ree distinct pe	arts known as	Cephalic
	(1) Ocular plates	:	(2)	Genital plate	18 -	
	(3) Corona	· ·	(4)	Pygidium		
125,	Ammonoidea is a	ı/an	* *		8	
335.5	(1) trace fossil		(2)	index fossil		
	(3) living fossil	¥	(4)	plant fossil		¥
129.	Ceratitic suture-l	ines have				
	(1) pointed lobes	and rounded sadd	le	*		
	(2) rounded lobe	s as well as rounde	ed a	addle		
	(3) divided lobes	and rounded sadd	lc	51 sa		
	(4) divided lobes	and divided saddle	:8		¥ °	
130.	Mouth and Anus	are centrally locat	ed i	n .		
	(1) regular Echin	oids	22			
	(2) irregular Ech	inoids			,	
	(3) both regular	and irregular Echir	oide			
	(4) neither regula	ar Echinoida nor in	regu	lar Echinoids		59.
(345)		24				

131.	Both the valves are held together by	me	ans of muscles in
	(1) articulata brachiopods	(2)	inarticulata brachiopods
	(3) both (1) and (2)	(4)	None of the above
132.	Barail Series overlain by		
	(1) Tipam Series	(2)	Dupitila Series
	(3) Surma Series	(4)	Jaintia Scries
133.	Dinosaur commonly found in which	fort	nation?
8	(1) Lameta Bed (2) Bagh Bed	(3)	Deccan Trap (4) Rajmahal Trap
134.	The shell is equilateral and unequal	in	
	(1) Acephala (2) Brachiopoda	(3)	Gastropoda (4) Ammonoidea
135.	Pupilla is a		
	(1) Discoidal Shape Gastropoda	(2)	Conical Shape Gastropoda
	(3) Cylindrical Shape Gastropoda	(4)	Globular Shape Gastropoda
136.	Mamelon is the part of ——— of the	Ec	hinoide.
	(1) Apical disc (2) Peristome	(3)	Spines (4) Tubercle
137.	Chromite deposits result from		
	(1) early magmatic dissemination	(2)	early magmatic segregation
	(3) early magmatic injection	(4)	late magmatic segregation
(345)	25		(P.T.O.)

i

100.	ROCK Sait is found in which place of motar						
	(1) Rajban	(2) Rampur	(3) Mandi	(4) Manali			
139.	A rock that is porous but not permeable						
	(1) marble	(2) sandstone	(3) silt stone	(4) granite			
140.	A rock-cut slope having inclination 40° due East. The joint set most likely to cause failure is the one dipping at						
ts	(1) 20° due 0	(2) 30° due E	(3) 60° due E	(4) 65° due E			
141.	Why basalt is finer grained than gabbro?						
	(1) Basalt formed from quick cooling of magma (2) Gabbro formed from quick cooling of magma						
	(3) Basalt has a mafic composition						
	(4) Gabbro has a mafic composition						
142.	Rocks are formed	when magma	·				
	(1) erodes	22	(2) crystallize	8			
	(3) undergoes rac	lioactive decay	(4) weathers	a a			
143.	Basic source of n	agnetism is					
	(1) charged partie	iles alone	(2) magnetic	domain			
	(3) magnetic dipo	les	(4) movement	of charged particles			
(345)	38.7	2	86				

	-4 1 41		
144.	Obsidi	9T 19	9/97
		TT 10	er, errs

- (1) metamorphic rock which contain high mafic mineral
- (2) igneous rock which contain high Fe and Mg
- (3) volcanic glass containing high silica
- (4) sedimentary rock formed by weathering of basaltic rock

145. According to Plate Tectonics Theory, most active volcanoes occur

(1) on continents

- (2) in large tectonic plates
- (3) along plate boundaries
- (4) randomly over continents

146. Match each items and choose the correct option :

Column-A

Column-B

P. Felsic

- 1. Magma that flows out Earth's surface
- Q. Kimberlite
- 2. Dark-coloured rock such as gabbro that is rich in Fe and Mg

R. Lava

3. Rock that is rich in silica

S. Mafic

- 4. Ultramafic rock that can contains diamonds
- (1) P-1, Q-3, R-4, S-2

(2) P-3, Q-4, R-1, S-2

(3) P-2, Q-1, R-4, S-3

(4) P-4, Q-1, R-3, S-2

147. Ores near Earth's surface are generally obtained from

- (1) waste-removal facilities
- (2) underground mines
- (3) open-pit mines
- (4) bodies of water with high concentrations of dissolved minerals

(245)

27

(P.T.O.)

- 148. What is the main difference between a conglomerate and breccia?
 - (1) Breccia clasts are angular; conglomerate clasts are rounded
 - (2) A breccia is well stratified; a conglomerate is poorly stratified
 - (3) Breccia clasts are the size of baseballs; conglomerate clasts are larger
 - (4) Breccia has a compacted, clay-rich matrix; conglomerate has no matrix
- 149. Detrital sedimentary rocks are classified based on the
 - (1) colours of the cementing minerals
 - (2) grain sizes of the detrital particles
 - (3) compositions of soluble minerals
 - (4) degree of compaction and lithification
- 150. Which of the following sedimentary rocks indicate long-distance transportation of the sediments?
 - (1) Quartz arenite
 - (2) Breccia
 - (3) Arkose (sandstone with lots of feldspar particles)
 - (4) Felspathic wacke

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-ध्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न खूटा नहीं है। पुस्तिका दोचयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिकाका रहित प्रवेश-पत्र के अतिरिक*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। *इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जावेगा, केवल उत्तर-*पत्र का ही मूल्यांकन किया जावेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्मारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाझ कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुवित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्राप्तक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-एत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-एत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार ऐन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाड़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।