Set No. 1

Question Booklet No.

05833

16P/202/24/2(i)

	(To be j	filled up b	y the cana	lidate by blue/bl	ack ball-	point pen)	
Roll No.							
Serial No.	of OMR	Answer S	heet	(2016))	2	
Day and	Date	••••••	***************************************		197	(Signature	of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एक कार्य

		No. 01	Questions	: 120
Ti	me :	2 Hours		Full Marks: 360
No	te : (l) Attempt as many que	stions as yo	u can. Each question carries 3
		(Three) marks. One n	nark will be	e deducted for each incorrect
	110	answer. Zero mark	will be aw	arded for each unattempted
		question.		•
	(2	2) If more than one alter	native answ	vers seem to be approximate to
		the correct answer, cl	noose the cl	osest one.
01	1171			
01.	wn	en the general equilibri	um position	(GEP) lies well above damage
1		ındary (DB) and EIL, th	e pest is sai	d to be a?
	(1)	Major pest	(2)	Key pest
	(3)	Minor pest	(4)	Sporadic pest
02	Rac	villuo the control of		
U 2.	1150	d against :	pecies israe	eliensis was first successfully
		1. - 2		
	(1)	Mosquitoes	(2)	Horseflies
	(3)	Sandflies	(4)	Tsetse flies
03.	Whi	ch one of the sugara-		
	(1)	ch one of the sugarcane	e pests has	all India occurrence?
	. ,	Chilo infuscatellus		
	(2)	Chilo sacchariphagus	indicus	
	(3)	Chilo auricilius		
	(4)	Acigona steniella		

04.	The nonchitinous layer of insect integument is:						
	(1)	Endocuticle	(2)	Exocuticle			
	(3)	Epicuticle	(4)	Epidermis			
05.	Inflo	prescence blight in cashew is o	cause	ed by:			
	(1)	Nephoteryx eugraphella	(2)	Crocidolomia binotalis			
	(3)	Solenothrips rubrocinctus	(4)	Helopeltis antonii			
06.	Bee	s was contains :		u			
	(1)	Hydroxy methyl furfural	(2)	Lauryl acetate			
	(3)	Glucose amine	(4)	Myricyl palmitate			
07	. Ind	oxacarb belongs to the group	of:				
	(1)	Carbamate	(2)	Pyrethroid			
	(3)	Oxadiazine	(4)	Indoxine			
08	. Ros	setting of flowers and interloc	ular	burrowing of bolls in cotton is			
	du	e to:					
	(1)	Earias	(2)	Spodoptera			
	(3)	Helicoverpa	(4)	Pectinophora			
	(-)						

09	. La	Lac sticks left after escape of nymphs are called:					
	(1)	Chowri	(2)) Kiri			
	(3)	Baisakhi	(4)	Phunkai			
10). Th wa	e earliest attempt at introduct	ion o	f a natural enemy made in India			
	(1)	Rodalia cardinalis	(2)	Aphelinus mali			
	(3)	Cryptolaemus montrouzieri	(4)	Encarsia Formosa			
11.	. Wh	nen more than one species of st, it is referred to as?	f para	asitoid is present in the same			
	(1)	Superparasitism	(2)	Hyperparasitism			
	(3)	Endoparasitism	(4)	Multiparasitism			
12.	Afte	er release of phosphine, the n	ontox	ic grey material left as residue			
	(1)	Aluminium chlodire	(2)	Aluminium hydroxide			
	(3)	Aluminium phosphate	(4)	Aluminium phosphide			
13.	Whi	ich of the following are tomorphogenetic responses in	e mo	ost effective in inducing			
	(1)	Blue and yellow light	(2)	Blue and red light			
	(3)	Orange and red light	(4)	Red and far-red light			

14.	Polle	len tubes and fungal hyphae exhibit :						
	(1)	Phototropic movement	(2)	Phototactic movement				
	(3)	Chemotactic movement	(4)	Chemotropic movement				
15.	Whi	ch of the following protein	s is	responsible for the osmotic				
	adju	stment of salt adapted cells?	į					
	(1)	Traumatin	(2)	Aquaporin				
	(3)	Gluten	(4)	Osmotin				
16.	Whi	ch of the following instrumer	nt me	easures the photosynthesis in				
		nts?						
	(1)	Osmometer	(2)	Infra red gas analyser				
	(3)	Porometer	(4)	Psychrometer				
17	The	Stomatal pores open when?						
21.	(1)	H+ ions are pumped into th		ard cells				
	(2)	K+ ions are pumped out of						
	(3)			s in response to a decrease in				
	(0)	water potential in the guard						
	(4)	of the mi		cells in response to a decrease				
	(')	water potential of the guard						
		¥						

18	3. W	hich of the following is the main enzyme of photosynthesis in maize							
		lant?							
	(1)	RuBP carboxylase	(2)	PEP Carboxylase					
	(3)	Malic anhydrase	(4)	Superoxide desmutase					
19	9. From which crop field the methane emission takes place?								
	(1)	Wheat	(2)	Rice					
	(3)	Maize	(4)	Sugar cane					
20	. Wł	nat is the current concentr	atio	n of carbon-dioxide in the					
		nosphere ?							
	(1)	270 ppm	(2)	300 ppm					
	(3)	396 ppm	(4)	700 ppm					
21.	C4	plants are mostly abundant in	:						
	(1)	Tropical region with more dry	conc	lition					
	(2)	Tropical region with more hun	mid c	ondition					
	(3)	Temperate region with more h							
	(4)	Temperate region with dry cor							

22.	. Which of the following equation is correct?					
	(1)	DPD = O.P T.P.	(2)	DPD = O.P. + T.P.		
	(3)	$DPD = O.P. \times T.P.$	(4)	DPD = O.P.		
23.	ATP	molecules in glycolysis are sy	nthe	sized by:		
	(1)	Substrate level phosphorylat	ion	E .		
	(2)	Oxidative phosphorylation				
	(3)	Photophosphorylation		e e		
	(4)	Photolysis of water				
24.			s at h	high concentration of oxygen is		
	refe	erred to as:				
	(1)	Pasture effect	(2)	Emerson effect		
	(3)	Warburg effect	(4)	Tanada effect		
25	. Th	e famous book "Wealth of Nati	ions"	was written by:		
	(1)	Robbins	(2)	J.M. Keynes		
	(3)	Marshall	(4	Adam Smith		

26	. Rer	nt is the reward for:		
	(1)	Labour	(2)	Capital
	(3)	Land	(4)	Management
27	• Mai	ginal cost can be der	rived from :	
	(1)	Fixed cost	(2)	Variable cost
	(3)	Average fixed cost	(4)	Average total cost
28.	Whe	en marginal rate of to	echnical subs	titution is more than one, the
		tionship between the		
	(1)	Complementary	(2)	Competitive
	(3)	Supplementary	(4)	None of the above
29.			s equal to ave	rage product, the elasticity of
	prod	uction becomes?		20 (20) 885: 50 (20)
	(1)	More than one	(2)	Less than one
	(3)	Equal to one	(4)	Equal to zero

30.	When marginal product increases, total product?						
	(1)	Increases at decrea	(2)	Increases at i	ncreas	sing rate	
	(3)	Increases at constant rate			Decreases at	increa	asing rate
31.	Impi	uted value of family	labour is	inclu	ded into :		
	(1)	Cost A ₁		(2)	$\mathrm{Cost}\ \mathrm{A_2}$		
	(3)	Cost B ₁		(4)	Cost C		
32.	NAF	BARD was set up in	year:				
02.	(1)		1981	(3)	1982	(4)	1983
33.	Pro	cessing creates:	40				ě
5/	(1)	Place utility		(2)	Time utility		
	(3)	Form utility		(4)	Possession u	ıtility	
				lantin	ity of demand	is:	,
34	. In o	case of food grains t	he price ei	astic	ity of domain		
	(1)	More than one		(2)	Equal to one		
	(3)	Equal to zero		(4)	Less than o	ne	

35	. Ne	t worth is a measure of:		
	(1)	Liquidity	(2) Managerial ability
	(3)	Profitability	(4	Financial position
36		ernal rate of return is the d	iscou	nt factor at which net present
	(1)	Maximum	(2)	Zero
	(3)	Minimum	(4)	One
37.	. Effe	ective weedicide for controlling	g wee	ds in transplanted rice crop is:
	(1)	Isoproturon	(2)	Simazine
	(3)	Butachlor	(4)	2, 4-D
38.	Fori	m of potassium held against t	he ne	gative charge of the soil colloid
	(1)	Non- Exch. K	(2)	Water soluble K
	(3)	Exch. K	(4)	Inert K
39.	Soil	temperature is influenced by	:	
	(1)	Nitrogen	(2)	Phosphourus
	(3)	Potassium	(4)	Humus, contents

40.	. At which crop stage of ground nut soil moisture stress is harmful the						
	mos	t?					
	(1)	Early growth	(2)	Maturity			
	(3)	Pegging	(4)	Nut formation			
41.	Sym	abiotic-N-fixing bacteria is :					
	(1)	Closteridium	(2)	Azotobacter			
	(3)	Rhizobium Sps.	(4)	Bacillus			
42.	. Cro	p tolerant to frost during Dec	embe	r-January month is :			
	(1)	Pigeon pea	(2)	Patato			
	(3)	Wheat	(4)	Gram			
43	. The	e maximum area under wheat	in In	dia is occupied by the species :			
	(1)	Triticum aestivum	(2)	Triticum durum			
	(3)	Triticum diococcum	(4)	Triticum vulgare			

44	4. \	Vh	o is known as	the l	Father of	Agron	omy?			
	(1)	Jethro Tull	9	×	(2)	B. P. Pal			
18	(3)	M. S. Swam	inath	an	(4)	Pietro de Cı	escer	ızi	
45						.0 to	6.0, its H-io	n cor	ncentration	
	11	icr	eases	times						
	(1	.)	1	(2)	10	(3)	100	(4)	1000	
46	. Tl	ne	17 th nutrient	added	d to the lis	st of e	essential eleme	nts is	s:	
	(1)	boron			(2)	molybdenun	1		
	(3)	chlorine			(4)	nickel	82	+5	
47.	Pe	g i	in groundnu	t is a	stalk-lik	ce str	ucture (origin	ating	g from the	
	m	eris	stematic regio	n at t	he base o	f the	ovary) known a	as:		
	(1)	ŧ	androphore			(2)	gynophore			
	(3)	1	perianth			(4)	androgynoph	ore		
8.	'nε	po	g' method of	raisin	g nursery	is fo	llowed in :		140	
	(1)		'obacco			(2)	Paddy			
	(3)	E	Bajra			(4)	Onion			

49.	The SPC/ml of milk as bacteriological standard of raw fresh milk					
	cons	sidered as very good:				
	(1) Between 200,000 and 1,000,000					
	(2)	Not exceeding 200,000				
	(3)	Between 1,000,000 and 5,000	0,000			
	(4)	Over 5,000,000				
50.	In A	rtificial Insemination :				
	(1)	Transfer of embryo is done	(2)	Ovum is harvested		
	(3)	Semen is collected	(4)	In vitro fertilization is done		
51.	Rat	e of milk feeding to new born o	calves	s should be:		
	(1)	1/10th of body weight	(2)	1/20th of body weight		
	(3)	1/5th of body weight	(4)	equal to body weight		
52	. Be	fore the first calf birth animal i	is cal	led:		
	(1)	Calf	(2)	Heifer		
	(3)	Cow female	(4)	Adult/animal		
		4				

- **53.** The minimum standards prescribed by the PFA (1976) rules for cow milk is:
 - (1) 3 to 4 per cent fat only
 - (2) 8.5 to 9 per cent solids not fat only
 - (3) Both 1 and 2
 - (4) None of these
- **54.** The minimum standards prescribed by the PFA (1976) rules for buffaloe milk is:
 - (1) 5 to 6 per cent fat only
 - (2) 9 per cent solids not fat only
 - (3) Both 1 and 2
 - (4) None of these
- **55.** How many kg. each of 28% cream and 3% milk will be required to make 500 kg. of a mixture testing 45 fat ?
 - (1) 25 kg. Cream and 475 kg. Milk
 - (2) 30 Kg. Cream and 470 Kg. Milk
 - (3) 20 Kg. Cream and 480 Kg. Milk
 - (4) 45 Kg. Cream and 455 Kg. Milk

56.	In HTST pasteurization the milk is heated to 72°C for:					
	(1)	15 Minutes		(2)	15 Seconds	
	(3)	30 Minutes		(4)	30 Seconds	
57.	Plas	tic cream contains	:			
	(1)	65 to 85% milk fa	t	(2)	55 to 60% milk fat	
	(3)	45 to 55% milk fa	t	(4)	90 to 95% milk fat	
58		lactic acid percen	tage by wei	ight n	naximum in sweet dahi should	
	be:	0.90 (2)	0.80	(3)	0.70 (4) 0.60	
59	. Th	e lactic acid percer	ntage by we	eight	maximum in sour dahi should	
4))	be (1)	:	1.00	(3)	(4) 3.00	
60. Inadequate homogenization of ice-cream mix may result is a texture						
	de	efect called as:			a 5	
	(1) Icy		(2	2) Coarse	
	(3	Buttery		(4	4) Sandy	
				16		

61.	All	the front line TOT projects of	ICAR	have been merged in:
	(1)	LLP	(2)	KVK
	(3)	ATIC	(4)	NATP
62.	Wh	ich one of the following is the	lates	st project of ICAR ?
	(1)	IVLP	(2)	NAIP
	(3)	NATP	(4)	KVK
63.	An	entrepreneur's primary motiv	ation	for starting a business is:
	(1)	To make money	(2)	To be independent
	(3)	To be powerful	(4)	To be famous
64.	You	cannot do everything and the	e emp	ployees need to take ownership
		ne job, the type of leadership		
	(1)	Autocratic	(2)	Democratic
	(3)	Laissez - faire	(4)	Participative
65.	Whi	ch one of the following is n	ot a	part of the 3 tier democration
	dece	entralization ?		
	(1)	Village Panchayat	(2)	Caste Panchayat
	(3)	Panchayat Samiti	(4)	Zilla Parishad

66.	Adop	oter category is based on:		
	(1)	Education	(2)	Awareness
	(3)	Innovativeness	(4)	Innovation
67.	The	process by which information	abou	t new breed of cattle is spread
	thro	ough inter personal channel ov	er a	period of two years among the
	won	nen members of village commu	inity	will be suitably explained by:
	(1)	Innovation	(2)	Diffusion
	(3)	Adoption	(4)	Communication
			0.2	
68.	Who	en various aspect of culture in	n soc	ciety change at unequal rates,
		situation will be explained by		W
	(1)	Social change	(2)	Globalization
	(3)	Sanskritization	(4)	Cultural lag
69.	Wh	o introduced "noise" as an eler	nent	in the model of communication
	pro	ocess?		
	(1)	Shannon and Weaver	(2)	Schramm
	(3)	Berlo	(4)	Leagans
		,		

70.	. Who is the chairman of National Institution for Transforming India					
	Aay	vog ?				
	(1)	Prime Minister	(2)	Chief Minister		
	(3)	Agriculture Minister	(4)	Development Commissioner		
71.	Ske	eptical are :		(R)		
	(1)	Early majority	(2)	Late majority		
	(3)	Innovators	(4)	Laggards		
72.	The	word extension was coined in	ı whi	ch country ?		
	(1)	India	(2)	U.S.A.		
	(3)	U.K.	(4)	France		
73.	Ane	uploidy arising through loss o	f chr	omosomes is termed as:		
	(1)	Hypoploidy	(2)	Nanoploidy		
	(3)	Lethoploidy	(4)	Aploidy		
74.	Com	plementary interaction of gen	es gi	ves the ratio is :		
	(1)	13:3 (2) 15:1	(3)	9:7 (4) 1:1		

75.	Qua	ntitative inheritance is throug	gh:	
	(1)	Effective genes	(2)	Special genes
	(3)	Polygenes	(4)	Ultragenes
76.	Who	discovered transponsons?		
	(1)	Hargobind Khorana	(2)	Morgan
	(3)	Hugo de Vries	(4)	Barbara McClintock
77.	How	small is an episome, as	comp	pared to the main bacterial
	chro	omosome?		
	(1)	1.0% (2) 0.75%	(3)	0.5% (4) 0.25%
78.	Wha	at is Bt cotton?		
	(1)	High-yielding hybrid of Ame	rican	cotton
	(2)	Disease resistant variety of	cotto	n
	(3)	Insect resistant variety of co	tton	
	(4)	Drought resistant variety of	cotto	on
79	. Wh	nen one gene specifics more tr	aits,	it is?
		Pleiotropism	(2)	
	(3)	Polytropism	(4) Dwarfism

80	. Acı	Acridine orange is used for inducing:				
	(1)	DNA denaturation	(2)	Mutagenesis		
	(3)	Chiasma formation	(4)	Bacterial transformation		
81.	pB	R322 is a :		B 2		
	(1)	Colicin producer	(2)	Reconstructed plasmid		
	(3)	Super coiled DNA	(4)	Hfr		
82.	Nu	mber of chromosome in all and	1			
	, itu	mber of chromosome in wheat	endo	sperm is:		
	(1)	21 (2) 42	(3)	63 (4) 14		
83.	The	statistical test applied to test	the g	oodness of fit is :		
	(1)	χ^2 test	(2)	'F' test		
	(3)	'Z' test	(4)	't' test		
84.	For	dosage compensation in	mam	mals, the phenomenon of		
		erochromatization occurs in :	ð.	9		
	(1)	One 'X' chromosome				
	(2)	Both 'X' chromosomes				
	(3)	'Y' chromosome				
	(4)	One 'X' chromosome and one	Y' cl	nromosome		
2050						

85.	Whi	ch of the following is pome fruit?						
	(1)	Pear			(2)	Pomegranate		
	(3)	Mango			(4)	Coconut		
86.	Pun	jab Dawn, Am	erica	n Beau	ty, Gulal	are varieties of	:	
	(1)	Baugainvillea	a		(2)	Gladiolus		
	(3)	Rose			(4)	Chrysanthemu	ım	
87.	Orig	gin of African 1	marig	old is		a .		
	(1)	South Africa			(2)	North Africa		
	(3)	China			(4)	Mexico		
88.	The	basic chromo	some	numbe	er of rose	e is		
	(1)	12	(2)	22	(3)	7	(4)	18
89.	Wh	ich one of the	follo	wing is	stem veg	getable?		
	(1)	Knol-khol			(2)	Radish		
	(3)	Turnip			(4)	Carrot		

90.	Edible portion of Brussels sprouts is :					
	(1)	Root	(2)	Leaves		
	(3)	Capsule	(4)	Small head or bud		
91.	Wh	ich of the following is non-clin	nacte	ric fruit ?		
	(1)	Apple	(2)	Mango		
29	(3)	Pineapple	(4)	Banana		
92.	Bitt	erness in carrot is due to:				
	(1)	Isopentanal	(2)	Carotene		
	(3)	Isocoumarin	(4)	Sulphoraphane		
93.	Edil	ole portion of grape is :				
	(1)	Pericarp and placentae	(2)	Mesocarp		
	(3)	Endocarp	(4)	Bract		
94.	4. Little leaf in brinjal is caused due to:					
<u> </u>	(1)	Fungus	(2)	Bacteria		
	(3)	Virus	(4)	Mycoplasma		

95.	Bald	win a cultivar of apple is:		
	(1)	Diploid	(2)	Triploid
	(3)	Tetraploid	(4)	Octaploid
96.	Holle	ow heart in potato is caused d	lue to): *
	(1)	Moisture deficiency	(2)	Excessive N ₂
	(3)	Poor Ventilation	(4)	Low temperature
97.	Gan	netangial meiosis found in :		
	(1)	Erysiphe	(2)	Scleritinia
	(3)	Cochliobolus	(4)	Phytophthora
98.	Dik	aryotization in heterocious ru	st is	taken place at :
	(1)	Same host	(2)	Collatral host
	(3)	Alternate host	(4)	Animal host
			×	
99.	Alfa	a toxin is produced by the fun	gus :	
	(1)	Aspergilus niger	(2)	Colletotrichum falcatum
	(3)	Alternaria pori	(4)	Cercospora canescens

100. Sulphure is used to control the:						
(1)	Web blight	(2)	Powdery mildew			
(3)	Rice blast	(4)	Downy mildew			
101. Identify the pathogen internally seed borne:						
(1)	Ustilago tritici	(2)	Ustlaginoidea virens			
(3)	Neovasia indica	(4)	Uncinula necator			

102.Do	uble stranded circular DNA fo	und i	t:			
(1)	TMV	(2)	MYMV			
(3)	YVMV of Okara	(4)	Cauliflower mosaic virus			
103. Alt	ernate host of wheat rust is:					
(1)	Sorghum	(2)	Oat			
(3)	Barberry	(4)	Maize			
104. Cell wall of fungi is made of:						
(1)	Peptidoglycan	(2)	Chitin			
(3)	Cellulose	(4)	β -lactam			

105. Which of the following is considered as father of Indian					
p	hyto	opathology ?			
(1	1)	B.B. Mundkur		(2)	K.C. Metha
(3	3)	M.K. Patel		(4)	E.J. Butler
106. E	Beng	gal famine is cause	d by:		*
((1)	Alternaria		(2)	Phytophthora
((3)	Helminthosporium		(4)	Erysiphe
107.	Peri	trichous flagella ar	rangement	t is fo	ound in :
	(1)	Pseudomonas		(2)	Erwinia
	(3)	Xanthomonas		(4)	Agrobacterium
108.	Wh	ich of the following	g cause po	wder	y mildew disease?
	(1)	Erysiphe		(2)	Sclerospora
	(3)				Aspergillus
109. Negative potential at hygroscopic coefficient is approximatelybar.					
109	.Ne	gative potential at 1		100	31 (4) 41
	(1)	15 (2)	20	(3	3) 31 (4) 41

110. The p ^H of 0.1NHCl solution is								
	(1)	0	(2)	1	(3)	2	(4)	3
111. The available nitrate and ammonium form is only% of the total								
	nitr	ogen:					*	
	(1)	1-2	(2)	2-4	(3)	4-6	(4)	6-8
112 is a constituent part of the enzyme nitrate reductase and								
nitrogenase:								
	(1)	$\rm M_{o}$			(2)	В	20	
	(3)	F _e			(4)	None	of these	
113. Pressure plate apparatus is used for measurement of soil moisture								
	tens	ion upto	••					
	(1)	4.2 bars			(2)	0.33	bars	
	(3)	15 bars		¥	(4)	30 ba	rs	
114. Specific heat of mineral fraction and organic fraction of soil are&								
		cal gm ⁻¹ °C ⁻¹ :		ě				a a a a a a a a a a a a a a a a a a a
	(1)	0.18 & 0.24			(2)	0.18 8	3 0.46	
	(3)	0.46 & 0.18			(4)	0.24 8	0.18	

115.	5. Conversion of protein to amino acid is called.								
	(1)	Carbonation	(2)	Deamination					
	(3)	Aminization	(4)	Amination					
116. Which form of phosphate ions are absorbed by plants?									
	(1)	$H_2PO_4^-$	(2)	HPO ₄ ⁻² PO ₄ ⁻³					
	(3)	$H_2PO_4^-$ and HPO_4^{-2}	(4)	PO ₄ ⁻³					
117. Retention of water molecules on clay particles occurs due to the force									
	of			a)					
	(1)	Adhesion	(2)	Cohesion					
	(3)	Adhesion and Cohesion	(4)	Centrifugation					
118. Horizon in which redeposition of leached soil constituents occurs :									
	(1)	Horizon of eluviation	(2)						
	(3)	Horizon of sedimentation	(4)	Horizon of precipitation					
the state of the s									
119. Red colour of the soils is due to the presence of:									
	(1)	Gibsite	(2)	Geothite					
	(3)	Magnetite	(4)	Hematite					

120. For accurate pH measurement, which of the following is often used?

- (1) Pocket pH meter
- (2) Dye solution

(3) pH meter

(4) Colour chart

ROUGH WORK एफ कार्य

ROUGH WORK एफ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

 प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।

2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ

में न लायें।

- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्घारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ ० एम ० आर ० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।

उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित

साधन का प्रयोग माना जायेगा।

8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।

9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने

पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।

10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।

11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ

का प्रयोग करें।

12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।

13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।

14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।